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/ 1. INTRODUCTION

i A. Overview

Time-accurate implicit finlte-dlfference schemes for the Euler and corn-

: i
pre_-_ible Navler-Stokes equations are used to obtain steady as well as

: unsteady flow-field solutions. If only a steady-state solution is required
2 •

• iteratlve paths that are not restricted to be time accurate can be sought

; ' to accelerate steady-_tate convergence. This is the concept of relaxation ":

whi,:h has been used successfully for invlscld transonic flow. :'
r

The t'urrent time accurate implicit algorithms [I-6] for the Euler or !

compressil,le Nsvler-Stokes equations rely on appror.imate factorization or
,(

alternating direction (ADI) techniques to achieve computational efficiency.

The same technique is the basis of many of the most successful relaxation i

procedure:i (e.g., [7-11]). As a consequence, it would seem that implicit

I algorlthm,q developed for time accurate flow simulation could be adaptedint. succ,,ssful relaxation procedures, and indeed this is the case.

In this work, tlh,iteretlve convergence properties of a currently

popular approxJn_qte-f:wtorlzatton implicit finite-difference algorithm are

studied b,,th analytically and experimentally. These studies are limited to

° the two-dLmenatonal E_,ler equations, with emphasis on transonic flow compu-

tations. However, th,. major results are expected to apply to those flows
|

that are _,overned by the complete Navier-Stokes equations, but in which the

convectiou phem, mene _4till play the moat important role in the determination

of the es_entlal features of the numerical algorithm, at lea_ _ from the

standpoint of stabili(v. ,

1978018852-005
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To achieve better numerical efficiency, large tlme-steps are often

needed for problems that are unduly stiff. To permit this, modifications

to lhe algorithm are ,lade (in Section IB) in an attempt to enhance its sta-

bility properties. The success of this attempt is supported by a tb.eoretl-

cal analy+:Is (Chapter !l), and a numerical experimentation (Chapter lit).

Nith achievement of stable large time-steps permitted, another technique is

also emplnyed to improve the iteratlve convergence rate. This technique,

B

"; which consists _f using a cyclic sequence of time-steps, appears promising

i after examination of a simple model problem (see Section IIC). In

j Chapter Ill, a variety of numerical experiments are conducted on the modi- [

fled algorithm and the,use of a sequence of time-steps.

Finally, it was observed in the course of this work, that the numerical

algc_rlthm could be subject to a partlcular form of Instabillty due to

variable coefficients. A discussion on this topic is presented in

Chapter IV.

In S,,ction IB, which follows, the definition of the base algorithm is

recalled, and a modlfled algorithm is proposed.

I_. (;ow.rnlng Equations and Numerical Algorithm

The conservative form of the Euler equations in Cartesian coordinates

and for two-dlmensionnl flow is given by:

atq + axE + _yF = 0 (I) ,

where

. ,,,.v .and -iov.,+p
\u(e + p) \v(,. + p)

1978018852-006



Impltclt finlte-dlfference schemes deve'Loped for the Euler _qttat!on_a !n

nonconservative [1] or conservative fo _ [2-3] share the essential features

of centra] spatial differencing (for stability) and alternatlng-dlrection-

like structure (for efficiency). The conservative d!fferencing scheme is

used here for transonic flow applications because it correctly captures

shock waves, but the results ol_tained here shou!d apply to the nonconserva-
t

rive differencing scheme as well.

' The Impllctt finite-dlffc-enclnF scheme can be represented as

(I �h6xAn)(I+ h6yB n)(_n+l _ _n)

- -_t(_x_ n + _y_) - ,-e[(Vx_x):' + (vy_y)_]_" (2)

where 'r

8x and 6y are central three-point difference operators

A, B are the 4_4 Jacobian nmtrices !_1 '

h = c,At, w/tit 0 - I or I/2 for Euler i_pllcit, or trapezoidal time

differencing °

(v,_)'.' n ore fourth-order numerical dissipation terms with coefficient

e _ 1/16

q • (qjk) vlth xj • (J - l)Ax and Yk " (k - l)Ay.

The operators ,_ and _'A are understood to operate on any product of terms b

tlmt follow to their right and, for example, _

,yB n _ -*'n+l n m+lq_n+l= (B ,k+lqj,k+l - Bj,k_lqj,k_l)/(2_V )

• qJ-P,k - 4qJ-l,k + 6qJk - 4 +l,k + qJ+; ,k

Central difference operators are used because A and B usually have

both posit ive and negative etgenvslues, for one sign ot vhtch the algorithm

tt
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_, is _lways unstable for only forward or ,m!y backward spatial differencing,

' The fourth-order numerical dissipation terms provide damping and ar_ needed

to control what is usua}ly referred to as nonlinear instability. They also
b !

ser:'e to _m_oth out snmll numerical inconsistencies especially due to

,

' slightly improper boundary conditions.
+.I

i

Although the basic differencing is stable for linear problems without
t

dissLpatton added, the scheme given by Equation (2) has to be modified if

the dissipation is to be allowed to increase with the use of large values

of At. More pcecisely, the dissipation coefficient ce should vary

directly Ms At to prevent nonllnear instability and _o maintain steadv- _F

i

!stale consistency. It is only in thls way that the steady-state solution

can be independent of At. However, because the numerical dissipation is i

added exp]Icltly, use of ce > 1/16 would in itself cause llnear instabll- i

Ity. Cont;equently, e_, cannot be maintained proportlonal to At and very
+

large values of At cannot be taken without effectively reducing the amount ,I

of _dded tmnmrlcal di+;slpatlon. In many flow-fleld problems, lack of suffl-
t

cleat numt.rlcal dissipation can cause instability. \

\Adding numerical dissipation implicitly would allow _e to assume _ny '

i positive value, and it_ particular, t e could vary with At. Unfortunately.

use of fourth-order i_tpllclt numerical dissipation requires the inversion
#

of l,lockpentadfagona] matrices which are twice as costly as the block trl-

diagonal inversions rl.quired for Equation (2). Use of second-order smoothlng

allows trtdtagonal structure but ts inaccurate. However one expects that

les_+ restricted value_ of ce could be obtained if a proper portion of tht,

ntam,rlc_l dissipation that fits within the tr_dlagona] structure is treated

1978018852-008
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Implicitly. Thl_ con_'ept ultimately leads to the following modification of

the n.mertcal algorithm

(I + h6x An - ¢tVx_x) (] + h_y._ n - ¢ [VyAy)(_n+l _ _n)
tg

:: - -_t(6x _n + 6yi_n) - ¢e[(VxSx )_ + (VyAy)2]_ n (3)

whtt'h has now been ln_lemented in recent f]ov-fteld codt,s [5,6],

In the following chapters, this modified algorithm is analyzed and com-

. part,d to th_ base dtflerenctng scheme, F4uatton (2), from the _tandpotnt of

lterattve convergence.

1978018852-009
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If. STABILITY ANALYSIS AN_ _rr_L_,_'e_,,.,
i

The efficiency ot a finite-difference algorithm for time-marching
I

problems depends cruclally on the stability limitations this algorithm is

subject to. In Sectto, IIA, the basic notions related to stability are

recalled. In Section lIB, stabillty bounds are derived for the case where

the numerical atgorithm is applied to a scalar, llnear, partlal-dlfferential

eq_ttton, with constant coefficients and linear boundary conditions. Appll-

cations of the results of this analysls are considered in Section IIC.

A. Generalities I

The importance of the stability condition is reviewed here for finite- i

difference methods in general, and for relaxation techniques in particular.
i

Recall that a numerical algorithm, for an Initial-value problem, is

o !
said to be stable when, for arbitrary bounded starting solution u - u(O).

the solution un produced by n appllcations of this algorithm remains

bounded as n tends to infinity. This limit may result from considering

either one of two limlting processes which are: (I) a mesh refinement 1

process, and (2) a search for a steady-state solution.

• \
In the case of a mesh refinement process, one evaluates a sequence of

soluClons uni (i = 1,2, . . .) which are all candidate approximations to

ithe exact solution u(tf) of the inltial-value problem, for some fixed

#

final time tf. At the Ith step in this process, ni applications of the

algorlthm are made, with initial solution u° - u(0) and using a time-step

At i = tf/ni which tends to zero as i tends to infinity. P. D. Lax (see
i

Richtmyer and _orton [12]) has shown that given a properly posed initial-

value problem and a f_ntte-dlfference approximation to it that satisfies

1978018852-010
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the ,_-¢_.n_l_.teney condition, the stability condition is the necessary and

suflicient condition ior convergence. Here the convergence is the one o[ ]'_}!_

lu nl - u(tf)l to zero as i tends to infinity (or At i tend,J to zero);

that is, the convergence el the finite-difference integral opel'ator to the

exat t intL.gral operator ovex" a fixed domain in the limit of a mesh ]_!_

refinement.

• !iIn the case of the search for a _teady-state solution° the time-step

_t n_lv bt fixed and n tends to infinity because the final time t t = n At

shot.ld do so. Fhere tile stability condition is not saffictent for (steady- i_

state) cottvergem'e, at_d one ustmllv relies on numerical evidence to demon-

str_tte tht. latter.

For both c.lses, violation of the stability condition produces an ampli-

fie_ttion t,f the v_lriotts forlst$ of errors that are present in the numerical

solution. These are: truncation errors (due to inexact differentials),

routed-off error_ (due to truncated arithmetics), errors due to sligh*iy

lnct,nststt.nt bomidarv eonditiotts, etc. For linear (constant coefficient) l

,llgt,rithm_.. the growth of the errors: if it happens, is getterallv exponen- t

tial with n (m_metiatts polynomial, or a combination of the two), so that

the numet'tcal s,,lut iot_ very rapidly becomes totally meaningless whenever ,_'

Y coml,utablt.. However, most schemes are stable when operating with a ttrae-
!

atel, that does not exceed a certain maximum allowable valne Atma x which "

unfortunately docreaat.s with the mesh spacing parameters Ax and Av, and .

slat, depet_d_ (for nonlinear ttchelttetl) on the solution u n itself. For

exarq_le, tot ulual explicit algorithms (e.g., [13]_ applied to the Euler
,,=

eqtu_tions, _tabilitv is enfe t,d bv the well-known Courant, Friedrlctts, •
1

j.

Let_' (CI:L) condition 1141. T. t4 condition conniderablv t'educes tile ;i

;I

1978018852-011



efficiency of these a]gorithms when used as relaxation techniques. This is

_'_ particularly true when, for an accurate resolution• a very fine mesh is

required. On their p_rt, implicit algorithms usually have the favorable

property of being unconditionally stable, at least for some simple test

equations. In practice, such uncondltlonallty is rarely truly achieved,

but tlme-steps that are significantly larger than those permitted by the

b

CFL condition can be successfully used (see Chapter III), This is the

reason that motivated the choice of an implicit algorithm in this work on

rela xat ion.

These considerations suffice to explain the importance of stability for

flnite-dlfference tlme-marchlng techniques. However, when such a technique

is employed as an artlfJce to solve a problem where time does not appear•

one m_ght want to relate the stability condition to the assumption of a

(known) theorem dealing with relaxation techniques per se. This is the

"contract_on-mapplng theorem" (see, e.g.• [15]) which can be stated as

follows: Given a closed domain D in a complete normed vector sp,_ce (e.g., i

Rm), and an application f, with domain D and range included in D, which

is contra(tlng in the sense that !
%
%
%

Vu,v 6 D , If(,,) - f(v)| -_ plu - v_ (4)

for some real positiw, number # - 1, the following statements are true:

(1) the equation u - f(u) has a unique solution u* (on D), and (2) for

any uI E D, the sequence un given by u° = ui and un+l - f(u n)

. (n _ 0,I,?, , .) is well defined and convelges to u*. Also, the fol-

lowing bound ho[ds:

I u n - u*l ----_-_- I un n- !
"- 1 - _ - u I (5)

1978018852-012
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When a fintre-dltference method !a used a_ .t rL, laxation technique, the

! iterative formula can indeed be wrlttLm as

,' n+ I •
! U " f (U n) (6) .

where f(u) can _,en-raIl:, he cast into the following qua.-,l-Ilnear form:

: f(u) = L(u)u + b(u) (7)

' where un " u(n_t) is the (m-dimensional) solution-vectcr. I,(u) is an

m x m coefficient matrix and b(u) is an m-vector generally re_ulting from
&

the appllt,ltton of botmdary conditton_. "I'ht, t;nfortunate dependence on u
L

of L(u) lind b(u) renders the ,malysis very difficult in very general cases.

For this t'ea_on, one i,,; generally satisfied when successtul in proving t

stability o, the algorithm in the special cat4e where the co,_fficients are

fro:-en to some. perhaps arbitrary but fixed, nominal values L and b. Then,

!
th_ bou:,dvdnes_ of u n. for arbitrary u °, is equivalent to the following

stx!,tllty condition: i

III -_ 1 (8)

¢'or .qome Ilorm, t'learlv, this condition is a weak form of the assumption

that f ,s contracting of the cited theorem (see Equ_tlon (4)).

If tht, matrix L cat_ be dlagonaltzed, it is convenient to tree the

spe,'tral Ilorlll for which Equation (8) redaces to: 1
z

, ,'(L) : I (9)
I

Matrices that are involved in finite-difference equations are usually bar, d
It

e

matt'ices. Despite this simplification, the determination of the etgensystem

of L is usually difficult. For this reason, most analyses apply to :;tmple

test case_,, such as the one of a scalar, linear partial-dtffereatt;,l equa-

tiers, with coefficients assumed constant in both time and space, and for

sol_, simple boundary renditions (generally periodic sometimes fixed, r:,.relv

J

1978018852-013
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mor.-, soph_sticated). In Section IIB, the stability analysis is developed

for this simple ease, Such analysis can be invalidated by either one of _ne

following realities :

1. Dtmensionaltt y

2. Nonlinearity or time-dependence

3. Spacial dependence of the coefficients matrices

4. Complex boundary condition procedures

In Chapt..: IV, a form of instability due to spatial variation of "_he

Jacoblan nmtrices of the Euler equations (item 3) is discussed.

B. The Case of a Scalar Linear Equation

I. Generalities

If the Jaeoblan matrices A and B of the Euler equations commuted and

wer,. constant, the governing equations could be dlagona]Ized into four

scalar equations of the form:

ut + aux + buy ffi0 (i0)

whi,'his the flrst-order wave equation in two dimensions. Although these

hypotheses are not satisfied by the Euler equations, the case of applica-

tlon of the numerical algorithm to Equation (I0) is expected to reveal the

essential properties of this algorithm. For this ease, if linear boundary

condition:; 1 are assu_,d, it is convenient to rewrite the finite-dlfference

eq_itlon (Equation (3)) in the following matrix form (derived in Appendix A):

Av(U n+l - un) ffi-(B x _ ly + Ix _)By)unAx (11)

IThe analysis wl]l be made for pcrlodlc or specified boundary
conditions.

i

i

i

1978018852-014
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where tl_e fot iow{._ dt.finltlo'_:: b.:_,-ebeen u._t,d

A x - Ix + qVxC x I , IDx

m t
Bx \'xCx _ ,oDx

t: x - (2,_x)_ x - VIld(-l,O,l)

(12)

Dx - VxA x - Trid(-l,2.-l)

! R tD x 1)x or D_ for second or fourth-order smoothing

\'x " a'_t/(2'\s) t half of _ Courant number

m_d Av Bv t'y Dv I_'v, and \' are defined in a similar way, For a mesh

containing ,lxK intel Lot grid points, x-subscripted and y-subscripted

mat1 Ices _l"t, of dimension JxJ and KxK, respeetivel'¢, it is assumed that

the JxK components t,f the solution vector u n are conventionally ordered

aa _el low_, :

u • (u l,Ul., ..... aiK, U?l,U2.,, . . . ,ujg0 . . . ,U,ll,Ul : ..... u K) t

" _. it is also assumed that this w,ctor
where It,S ILSl|_I] UJk. " u(xlt. Yk' tn

lute bet, it defined ill sttt'h a way that u = 0 Is the solution of the differ-

enct, oqua| [ola thtt onv hopes to attain at tht, steady statt,. The homogelaettv

of I:quation (11) results from this implicit convention, l:lnallv, definl-

tlot_ and .,igen_vstem_ of trtdlagonal rnat;'ict,_ for variou.q boutl,h_rv coudi- r

lions are given in Ap|,t, ndix B.

In'ceiling Equation (11) yields the new equation: :T

n+ I
u " Lu n t 14 _

Let X and Y be ,*wo hOt, singular matrlce_ of sizes .lx,l and KxK

res|_ect lvt'ly° t,_ be el_osen iatt, r. tlpoll d.,ftning

1978018852-015
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n
v = (X _ Y)-lun (15)

,, and making, various applications of Equations (A3) through (A5) (see

_.-' Appendix A), Equation (14)becomes:

vn+l = AVn (16)

where the matrix A, which is defined by

A - (X _)Y)-IL(x _)Y)

m I - X-IAxlBxX _3Y-IA_IY - X-IAxIX g)y-IAyIBvY

in which, for example,

Bx X- iBJ

l

is ,,;imilar to th,:matrix L.

Observe that for the simple case where no smoothing is applied ,i
(E e .. e i - O), the matrix A can be reduced to a diagonal form. For this,

it :,uffic_.s to choose X and Y to d'_agonal_ze the matrices Cx and Cy.
\

Now, considering the $:eneral case where c e and e i are nonzero, and assum-

Ing tile r_Ltrix A diagonaltzable, an inspection of Equation (14) or (16)

Indicates that the solution u n (alternately vn) is bounded for arbitrary

starting _:olutton, if and only if the spectral radius of the matrix L
B

(alternately A) is h,ss than or equal to unity. I_ is desired to determine

the condtlions on _e' ct and o under which this requirement is met for

arbitrary values of the parameters v and v that control the time-stepx y

At ("unconditional stability"). This ts done in the next two sections for

sore,, assur,ed boun,_ _, conditions.

J

I
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_"
2. The c4me of periodic boundary.conditions"

The t.ase of periodic boundary conditions is of interest because It

permits the deveIopn_ent of a rigorous analysis of a pure Initial-value

problent, llowever, as one can anticipate by observing that the exact solu-

ttotl for 11118 problem is given by

u(x,y,t) - u(x - at, y - bt, O) (19) .

it does not provide a satisfactory test case for studying steady-state con-

' verl:ence. Nt,verthele_m, ttle analysis of this ease will be performed here

as ._ gutdoltne for the treatment of another case. __

When periodicity conditions are applied, it is convenient to assume

that UI_kj is defined for all (pnsittve or negative) integer values of

J aud k and that

n n

ul+vj,k+ttK = Ujk (\, and t_ integers) (20)

The forward and backward shift operators (acting on either J or k) are then

tnv,'rse oI one another (see Appendix A); so are their tmttrix representations

whi,h thu,;, can be slmultane._uslv dtagonallzed. As a eonsequeuce, the 1

matrice_ it1 Equation (11) with the same subscript (x or y) which are linear

co_,tnattous of their powers are also dtagonallzed by the same transforma-

tlou. Tht, (circulant) etgenvectors of these matrices are then chosen to

con:_truct X ttd Y (for details see Appendix B). Thit; g,ives: ::

. 'Beam [16] orlgluallv showed the unconditional stability of the algo-
rtthm whe. applied (consistently) to the equation:

ub + ux + uv = ,(Uxx + Uy.y)

t

'rhl,_ analysis is exteuded here to the case where the dissipation terms may
be Iourth derivatives ,is well as se,.'oBd derivatives. Also, in the present
analvs[._, these dissipation terms are differenced in a way that is not
nect,_sarilv t|_e-a_'ctlr,lte,

]9780]8852-0]7
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!
I

'1xmj - 1/,0- exp(miO]) I
(.'l/

Ymk " 1/fK exp(mt0 k'

where t)j - 2_() - 1)/J (J - 1,2, . . . ,J) and Ok - 2_(k - 1)/K

(k - 1,2 ..... K).t The etgenvalue of the J forward shift operator asso-

cialed to the etgenvector Xj - (Xmj) 1_ simply Xm+l,j/Xm, j = exp(il,j).

Slm_larly, the eigenvalue of the k forward shift operator associated to

the eigenvector Yk " (Ymk) is exp(iOk). The eigenvalues of other oper-
t

ators are obtained as linear combinations of the powers of exp(10j) or

exptl0k). For example, the eigenvalues of the _trices Ax, Bx, Cx, Dx,

!

and Dx are given, re_;pecttvely, by: f'

aj = 1 + 0Vx(iC j) + rid j

bj = Vx(iC.)j + Cldj

: Icj = exp(iSj) - exp(-1Oj) = 2i sir.8j (22)

dj - -exp(-i0j) + 2 - exp(i0j) = 2(1 - cos Oj)

d_ - dj or dj? - for second or fourth-order smoothing
!

!

The eigenvalues of the matrices Ay, By, Cy, Dy, and Dy are denoted by

ak, bk, i(.k,dk, and (I_,and are given by an equation similar to Equa-

tion (22).
I

3Remark: It is _hown, in Appendix B, that X and ¥ are unitary, that is: !

X-I = X" (adJolnt of X) = _t ._

y-I = y* (adjolnt of y) = _t

Thi_ is because X and Y represent (finlte-dimenslonal, inverse) Fourier
transforms.

I
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W|th th|, choice of X and Y. the matrices Ax. Bx. Ay. and By In

Eqtu_tion 117) are all diagonal. A_ a reault, the matrix ^ Itself t,ecomes

a diagonal matrtg with eigenvalue8 given by:

aja k - (b.| + b k) (23)! .
aja k

'rhi,_ giver, :

' aj k + tt_jk

ll k , a.lk + tt_j k (24)

?_]k 'In which '_.}k' t4jk' &lk and are real and given by: :

) '_Jk (1 4- ,tdj)(1 + rid k) -- 0;'c .

_.' 6]k - 0[(1 + ,'idk)Cl + (1 + etdj)c,l. 4
, (25) '

i _jk" h_- ,e(d;+d;> ,
t

tijk = _Jk- (el + c,,) _i"

where c 1 - VxCj and c:, " vyc k. The atabiltty condition (Ix_kl-_1> then

beet)men: 'a

or _(

" -%_,,_(d;+d_>* _o:'(d;+d_.)"_- 2_.i_(o,+o,>.+(_,+,:o>:.<_0 :,'i

r_

2,-e(d j + ,t_)[(l + ,id.i)(t + cid k) - O;clc _1 - ,:e_(dj + d_) "_

+ 20(, I + c?)[(1 + tidk)C 1 + (1 + )tdj)c2] - (c 1 + c.) ? >_ 9 1
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or

1'+ _,_(cl,c 2) - 0 (2,)

where

T ,, ceCd i + d1_112(1 + idjl(1 + cid k) - te(d _ + dl_)l (281

and Q(Cl,C 2) is a quadratic form n Cl,C 2 given by:

2 + _iuj + fldk)Q(cI,c2) =, [20(1 +cid k) - ]c 1

- Otce(d _ + dl_) - 1]clc 2 + [20(1 + eicl }) - 1]c22 (29)

NotE. that if no smoothing is appli,,d (ce = _i = 0), T vanishes identically,

whl]e Q(Cl,C 2) reduces to (20 - l)(c I + c2) 2. From this, one ('oncludes

that the Fuler explicit method (8 = O) is uncondltlonal]y unstable for this

case, whl]e the trapezoidal tlme-dlfferenclng method (0 = 1/2) as well as

the Euler implicit method (0 - i) are both uncondltlonally stable, as well

known [2,3].

Now consider again the general case where ge and _i are nonzero. Since

the wave speeds a and b as wull as the tlme-step A_ ought to be arbitrary,

the parameters Vx and Vy 9nd consequently cI and c2 must be considered as

free parameters. The condition expressed in Equation (27) then breaks into

two :

T _>0 (30) i

Q(c_,c2) >_0 (_I) "

Equation (31) wtll be examined first. In view of Equation (29) it is appar- .

ent that Jts satisfaction requires, in particular, that the coefficients of

2 and c22 in Q(cl,c2) be n,,nne_:atlve This gives tho following necessaryc l

conditions :
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l

20(1 + f tdk) >_ 1 (3.') i

2011 + Lid j) _ 1

1

The definitions of dj and dk (Equation (22)) indicates that these etgen- !

vah,es are posittve (dissipation), but tend to zero (for fixed values of i

] and k) tn the limit of a mesh refinement _x,_' -' 0 (or J,K , ,"). Hence,

. Equation 132) requires that

1
o z _- (33) _-

Sufttclency is obtained by enforcing, also, that Q(c l,c.,) be nonfactor-

able. This _tves the follo_¢lng condition:

10(2 + ricl.I + eid k) - oP,-e(d.] + dl_) - 112 _;'
4

- [2011 + _ldk) - 1][2011 + rid i) - 11 a 0 (34)
I

Expanding above quartlc form in 0 would reveal that 62 can be factored _'

in _t. For this reason, after a few slmpllflcatlon_, a condltlon equivalent !

to l.quatlon (34) can be obtained in the form: !

I gjk(O )
, _, o (35) j

where gj.k(O) t_ a quadratic form in 0 given by:

_ ' ,..- gjk(O) • 02Ce2(d + dk)2 - 2Ore(dj + d_)(eid j + rldk + 2) :_

il ct2(d j "' + 2ee(:l _ + d_) + - dk)2 (36)

_, _qtmtion (35) must be enforced for all values of J a_d k and for the par- ._
" 4

ttcular value of 0 which corresponds to the chosen method (0 = i/2 for

trapezoidal tim-,-dlfferenclng, 0 - 1 for the Euler implicit mcthe.d). In I

this way, a condition on ce and eI results. Before expllcltlng this con- i_

_. dltlon, assume momentarily that re, rI, and 0 have been chosen to satisfy '

T,

i,
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precisely this condition. Thcn, corratnlv, for some arbitrarily cho:_en

values of J and k, it is true that

g;k < gJk (0) < 0 (37)

* = gjk(0).if one defines gJk Min But gjk(O) achieves its minimum for

0 = (ctdj + cidk + 2)/r ' 'L_.e(d j + dk)] so that:

"k , " •

gJk = -(':idj + Clak + 2)_ + 2ee(dj + dk) + cl2(dJ - dk)2

12djdk J '= --4e. - 4(Etd j + etd k + 1) + 2ce(d + d k) " ,

= .t[ee(d _ + d_) - 2(1 + eidj)(1 + fidk)]

.!T

" " eetdj + d_) (38)

!

wheze 'r is given by Equation (28). Since ce(d _ + dk) > O, this shows

thai Equation (30) is redundant if Equation (31) is enforced. Consequently,

the satistaction of Equations (33) and (35) constitutes the necessary and

sufllcient condition _or unconditional stability.

Expllcitlng Equation (35) requires some further algebraic treatment

which is presented in Appehdices C and D. From this, if one lets

t_= (0 - I/2)/0', the following stability conditions result:

b(Ce - /-'_e) <- ¢i < O(re + _e ) (39a)

(c e - 21_)<_Ei (39b)

for the case of second-order smoothing (see Appendix C), and

20(2c e - _l"_e) < ct < 20_ (40a)

20(': e -_)<_ e t (40b)

for the case of fourth-order smoothing (see Appendix D). The corresponding

domains ot "unconditional stability" are shown on Figure 1. Note _hat in

f.
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(b) Fourth-order smoothing applied explicitly.

Fisure i.- Domain of unconditional stability for periodic boundary
conditions.
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case fourth-order m,:_ing is applied, this domain is bounded (Figure Ib). I

For the trapezoldal-tlme-differencing scheme, the domain reduces to Lhe

line _i = Ce/2 in case second-ordor smoothing is applied, and collapses

to the origin in case fourth-order smoothing is applied. These conservative

results conflict with the authors' ntmerlcal experience (see Chapter 717).

This was attributed to the assumption of periodic boundary conditions which

results in an inadequate model r_laxatlon problem, as mentioned at the begin-

ning of this section. For this reason, the case of specified boundary data

is examined in the next section, i

3. The case of specified boundary data

When the solution un is specified at the boundaries, the forward

shift operator, Trid (0,0,i), and the backward shift operator, Trld (I,0,0),

are no longer inverse of one another, and cannot be simultaneously diagon-

alized as they could for periodic boundary conditions. (In fact, they are

both singular and in Jordan canonical form, or the transpose of it, with

all the elgenvalues equal to zero.) As a consequence, in Equation (Ii),

matrices with the same subscript (x or y) csnnot be expressed as linear

combinations of (positive or negative) integer powers of a unique (shift)

operator, and cannot in general be simultaneously diagonallzed. This is +

p

true, in general, for the matrices Ax end Bx together, and Ay and By

together. (If second-order smoothing is applied, a case of exception occurs

when c i = ec_.) However, approximate comtatlon of the right- and left-
I

hand sides of Equation (Ii) occurs when the coefficients of the smoothing

terms are either very small or very large compared to the coefficients of

the convective derivative operators Cx and Cy. This situation corresponds

to

"1978018852-024
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L <. 1 or >> 1 (/,i)
v

where E iS either _ or ce and v is either vx or Vy.

In practice, iwllcit smoothing is introduced in an attempt to keep

the coefficient Ee dlrectly proportional to At, and still maintain uncon-

dltJonal _tability. If one assumes a priori that this is posslble, 4 and

t set.t;

ae At I
Ce (42)4

Jc i - ale At

for some i'onstants a4.and ai, Equation (41) becomes:

A__xxand _ << 1 or 7> 1 (43)
R

The mesh 8paciPg parameters dx and Ay can certainly be considered as very

small and so are A.x.laand Ay/b, in general. However, if this model prob-

lem i_ of any relevance for the Euler equations, the wave speeds a and b

should play the roles of the eigenvalues of the Jacobian matrices A and B.

Scn_,of these elgenva]ues can eventually become very small in some regions

of +ttran_;or.lcflow field (see Chapter IV), so that both limits in Equa-

tion (43) are of interest. If one makes the asstn_i)-ionthat these extreme

situations ((i) Ax/a zmd Ay/b very small, and (2) Ax/a and ay/b very
T

• lard,e)are those that produce the binding conditions for stability, one is

teml,Led to analyze the,as)wtotic properties of the algorithm in these two

limits. This is precisely whaC is done In the rmnalnlng part of this

sect ion.

4To bring a theoretical support to this assumption is precisely the
motJvatio_ for this analysis.

!

t
1
[

L
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Cnnq__der first thc case _,_ere Ax/a and Ay/b are both very small,

This case will be referred to as the case of large Courant numbers (v x and

j •

Xy_. Choose X and Y to be the tranrformations that diagonalize the

matrices Cx and Cy respectively. These are given by (see Appendix B):

Xmj - ,'2/(J + I) i m sin m0j I (44)

J
D

Ymk /2}(K + I) i m- sin m0k

where now t)j - J_/(J + 1) (J ffi 1,2, .,J), and 0 k ,. kv/(K + i) m

(k - 1,2, .... K). As for the case of periodic boundary conditions, these

transformations are unitary (Cx and Cy are skew-synnnetrie), so that: i

X_,_ - X*_3 = /2/(J + 1)(-t)J sin .10:.,
(45)

Y_- " Ymk*- ,_(K + l)(-i) k sin k0 m

As a result of this choice, the matrices Ca and Cy can be written a -

fo 1]ows :

Cx i x(i_)x-_ } (_6)Cy v(lxy)v -j

whele _ = Diag(cj) ard Ky - Diag(ck) , in which now, cj = cos 0j and

ck • cos (k" On their part, the matrices Ax and B_ in Equation (18)

become :

_x " Ix + 10VxKx + ci(X-IDxg)_ (47) "

Bx" i_xXx+ %(x-lVxX) J

and the matrices Ay and By are given by similar equations. In these equa-

tions, matrices proportxonal to v x or Vy are now considered as priP.cipal

parts, and the ,_th,r matrices as perturbatlons. Recall that as a partlcular

case of application of a general result of perturbation theory (see, e.g.,
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[17}), the first-order perturbations on the etgenvalu,_s of a dta_o-al )j

1

matrix (with distinct eigenvalues) are simply the diagonal _.lements of the

matrix by which it is perturbed° In vieg ; Equations (173 and (q7), it

appears that the off-diagonal elements of A are themBelves ftrst-ord-.r

perturoattons and thus contribute to the etgenvalues of A by terms that

are at least se,-ond-order perturbations. Such perturbations are neglected ,_

|in the remaining part of this derivation. In this app7 .mation, the
J

• matrices Ax and _x' for example, become diagonal matrices with eigenvalues _'.

giw n bv

aj ," l + OVxlC j + tttj/
. (48)

bj " VxlCj + "ed_

where cij and di are defined by i

di " (X-_DxXl)J } (_91 i_' = (x-_D_x)J J3

and ter_.sof order (C/Vx): are neglected with respect to one. But Equa-

ttot_ (48) is analogous to Eqtmtion (22). Thus, unconditional stabilttv iq '"

dj dj 'enft,rced by Equation (_5), provided , dk, ', and d k are replaced by

t
dI dh,, dj _• ', .and d , respectively, which act as "etfecttve etgenvalues" of

the smoothing operators at large Courant numbers. The_e effect_lye elgen-

values are evaluated in Appendix E. In particular

dj = dk = 2 t_O)

(which is the average value of dj or dk_; making the corresponding substl-

t_lttons in Equation (3_) yields, .fter some simpltficatioas: ,,'

"'(d_ + d_) - 4,'(2_[ 4- l) + _ - 0 ,'teO _ _

q

*i

t

7

i
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$

or

ci ->-- e - (51) "

where again _ : (O - I/2)/02 , and _,= (i/4)Max(d_ * d_). In particular,

"_ --d' = d = 2, so chat _ = Iif second-order smoothing is applied, d = d] k k

and Equation (5[_ becomes: i,
t

> e #
ql (%- U) (52) !

if instead, fourth-order smoothing is applied, Max(d_) and Max(d i) converge :,
!

to 8 in the limit of a mesh refinement (see Appendl_ E),.so that y -_4 and

1Eqtmtion (5I) becomes

ei _>20 e - _ (53) J

?
One can observe an analogy between Equations (52) and (53) and Equations (39b)

and (40b).

Consider now the reverse situation where the Courant numbers vx and Vy i

(alternat_.±y the wave speeds a and b) are small compared to the coeffi- .,

z__ents _, and ci of the smoothing re,ms. For this case, the matrices "_

X and Y appearing in Equation (17), are chosen to be the orthogonal

matrices _ and q that diagonaltze the (real symmetric) smoothing operators

! t

Dx and Dy (and also Dx and Dy), respectively. (The matrix E is explictted

in Appendix B. It Is fot,ndsymmetric, but this property is not used here.)

t

in this way, the smoothing operators Dx and Dy (and Dx and Dy), which pro--

duc_. the principal part of A, are represented by diagonal matrices, while

the convective derlvalive operators _xCx and VyCy, now sought as perturba-

tious, are represented by the following similar matrices:

vxCx - Vx_tCx_
(54)

VyCy = VyntCyq
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!

i' It- ..;t,cond-ordt, r i_t, rturb,'tt lon._ on tilt' t'lgenv.llut's of _. .irt, neglt,¢ted, only

tilt, dl,l_OIl,ll t, lt,l_t, nt.,4 of t'K lllld CV IIt'.'d to bt, l't't_i|lted, Tilt'so _lt'e Lt, lO

bt'c_iu._e ('x _lnd C,,,, .lilt{ con_equent|v _:x anti (';v ave skt,w-svmmt, trtc. II.t,lltt ' ,

"r first-order _ulaIvs|s nnd :t, roth-ot'del" analysis of tills t-_lse l_rOduce tilt,

,.4,ink,. t't'Stllt. Tilt' latter on!, con.,_lsts of Crediting tilt' cnse of |',tiE!" dlft'u_ton
i

_. for which !.:quat{on (2{) applies If. Ill tile dt'fltlttions that follow this

i t -'qu_tt lot! (l'_quiitiotls (_','¢) :llltl (25)), Cite parameters, ¢I and ¢, are st, t equal

• to :-ere, and If 0 and art, dt, l |llt'd /l.q Ill Equation (4q) Since Chest,
.I tlk

a_ arc tilt, oi_lv nvodtfi,'at tons t,_ bring to the ,lll'l]vt_ls. devt'lopt, d for pot'lodi¢

'; boulld,ll'v t ondlt [on._, t he stabllttv ccndit Ion ts given by Equation (31)), or
v

t't|tli Vd |t'nt ! v : "{

!
2(I _ ,l.I.l .! + ,tdk) - ,e(dj + tll_) "_ 0 (55) 1

I
Enft,rclng that Equation (%5) bt' satisfied for all values of J and k

rt, slt/ted Itl tile follo_,'lng t'ortdlt|on:

'(: } i
t t 2 _ ",', - for t"e 5 1

' ( ') ('_)'1 -" 2 "e - -'2 for ce _" 1 1:1
for tilt' t',lst, whol-t, stwolld-ot'dof amoothlng Is _lppl_ed, and In

:i
: I "" ttt' -- 4 for t O -

'l " _t'- g for _e " 1

for tilt, c,,_t, whore l'oltrth-order smoothing Is ,'q_pl|od. (The derivtttton of '_

j Equ, lt|on,q (Sty) Intt (5;'1 Is gtvt,ll Ill Al_Pendtx F/. ,_

i I11 t't,tlt, ltislotl, an :ilq_roxluulto dt'flnlttotl of tilt, douu_tn of uncondttion_ll ,]

-_ stab! I It v ahoul,I bt' ol,t.ltnt, d by t-t_mbln|ng t ht, condit lens given In Eqlm-

!'.tOll.'4 (¢,_ ¢111d (%tt) for tilt, t'tIst, wht'l'¢" _econd-ordt, r smoothing Is ,lpplit, d,
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and in Equations (53) and (57) for the case where fourth-order smoothing is

applied, These domains _re shown in Figure 2 tot the trapezoidal time dif-

ferencing method (9 = 1/2), and in Figure 3 for the Euler implicit method

(0 = i). On the latter figure, the domains that have been previously

obtained assuming perlodic boundary conditions, are reproduced for compari-

son. It appeals that in assuming specified boundary data instead of
a

periodicity, results in less stringent stability limitations.

b

The key result of this analysis is _hat it suggests that the domain of

unconditional stabil_ty in the (£e' Ei)-plane is unbounded, allowing the use

of arbitrary values of At and Ee' provided eI is maintained sufficiently
i

large. (This will be demonstrated in the next chapter by various numerical

experiments that were conducted on a more complex problem.) In practice, it

should be sufficient to let

ci i

O_e 2 or 2 (58)

when eithel second-order or fourth-order smoothing is employed. If now, . l

ce is kept directly proportional to At, the inconsistency of the algorithm

removed, and this, theoreLically, without violation of tileproperty of 1
is

unconditional stability, provided Equation (58) is enforced. This was not

possible with the original formulation (Equation (2)).

C, Application: Sequence of Parameters

IttSection lib above, It was shown that in the modified differencing

scheme, Equation (3), the numerical dissipation could be kept directly pro-

portional to At. If this is done, the steady-state solution is _ndependent

of At, and much larger values of At can be taken without triggering

i
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.9 - LINEc = _ /2 ALONG WHICH

UNCOI_DI_IONAL STABILITY // _#/_1
_ IS ACHIEVED WITH PERIODIC \ , / _ _

LIMITATION FOR SMALL / / _. _'1'
.6 -- COURANT NUMBERS / _'] '_ _,I_11'

* ,4 _- ///
./ ,K I _I_tl j' "LIMITATION FOR LARGE

.3 -- /" / _ I',' COURANT NLJMI3ERS
' ., / .,,,¢f_ll" ei _' 114 %

/ _'1_' LIMITATION FOR SMALL

-//" , c, > 1/2 (_/_-e- 1/4) (a)
o _--1 1 I 1 _ 1 i 1 I I

| _ LIMITING STABILITY CURVES

I FOR Fi J B.C.1.6--

1.4 - LIMITATION FOR LARGE Z

COURANT NUMBERS f I'

i_t .6 -- _, I_I_1" \LIMITATION FOR SMALL_1_' COURANT NUMBERS 'I

.4 -- f l" _ __ ei ;;' _-1/4

_i .1 1 ,1
_;l 0 .2 .4 .6 .8 1 1.2 1,4 1.6 1.8 2 2.2 2.4 2.6

li 'i (a) Sec,_nd-order smoothing applied explicitly.i

:1 (b) Fourth-order smoothing applied explicitly.

I Figure 2.- ltomatn of unconditional stability of the trapezoidal time

I differencing scheme.
J
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t,

.7

.8

.5 FOR LARGE
COURANTNUMBERS ,

.4 ei > 1/2 (_,-1/2)

.3

.2 LIMITATION FOR SMALL

.1 COURANT NUMBERS
_i > 1/2 (_/-_e-1/4)

0

(a) Second-order smoothing applied explicitly.

/
._LIMITATION FOR LARGE

1.4F _ COURANTNUM.ERS

LEt _ _i > 2 (%- 1/8)

1.2 STAB

#
1 F ._ ,_R X _ LIMITING STABILITY CURVES

/ _v /_,UNSTABLE\ FOR FIXED B.C.

ei .8_- /__' _AB_:_- _ DOMAIN OF STABILITY

• c
.4 I-_.\\_-/_ _ LIMITATION FOR SMALL

I_T COURANT_NUMBERS
.2 _i ;) _- 1/4

I I I I
O .2 .4 .6 .8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

ee

(b) Fourth-order smoothing applied explicitly.

Figure 3.- Domain of unconditional stnbillty of the Euler implicit method.
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i

nonlinear instability. Large values of At, as well as a sequence of a

small to • large _t might thus be used to accelerate steady-state

convergence. 111this section, some motivations for using this technique

are given. Consider again the simpl e model two-dlmenslonal flrst-order

wave equation. Equation (i0). If the solution u is specified at the

boundaries, and if numerical dissipation is not applied, the elgenvalues of

!
the iteration _trlx L can be obtained from an equation similar to

, Equation (23), and are given by:

1 - VxVy c_ Oj cos Ok + i(0 - l)(vx cos Oj + Vy cos ek) (59)

_Jk = I_- _xVy cos Oj cos ?,_.,+ '(vx cos Oj + Vy cos Ok)

where vx ffiah/Ax and _y = bh/Ay. The hP-term which appears in the real

parts of both numerator and denominator of _Jk is the cross term that

results from the approximate factorization of the left-hand side of the

difference equation.

It is dlrevtly apparent that for the trapezoidal time differencing

method (e - 1/2), the modulus of lJk is exactly equal to i, whether

approximate fact:orlzation is used or not. This means that no dissipative

mechanism exists to permit the steady-state convergence of thls method,

unless smoothln_ is applied or boundary conditions are mod4.fled.

Consider now, the Euler implicit method (O - i), and rewrite _Jk as

follows:

- (60)
_Jk i + l_jk

[

where

LI

h[(a/_x)cos Oj + (b/Ay)cos Ok]

CJk " I -- _2(a/Ax)(b/_y)cos Oj cos Ok (61)
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Without approximate factortzation, the h2-term in the expression of tJk
}

would disappear. Then I_lk] would be proportional to h, and IXlk]
would decrease with increasing h. In this case, the larger the time-step,

the faster the ,:t-_vergence would be. However, a different conclusion can be

drawn if approximate factortzattJn is used. For that case, for given wave

speeds (a and b), and frequency parameters (0j and Ok), the modulus of \Jk

achieves a mlni,,um when ltjkI is maximum, and this occt,ru when

I Ax Oj • 'Y I1/2 (62) 'h - a cos b cos Ok

Thi_ shows that there exists an optimum time-step parameter h which not

only depends on the wave speeds, a and b, and the mesh spacing parameters,

Ax and Ay, but 41so ol. the frequency parameters, Oj and Ok. For small

vah,es of cos _j and cos 0k (interpreted as tow frequencies), or for small

waw' speeds a and h, a large tlme-step is desirable, as anticipated. How-

eve,, for value, of Ices 0jl and Ices 0k[ of order 1 (Interpreted as high

frequencies), the Cou, ant numberq ah/Ax and bh/Ay should them.qelveF, be o!

order [ for a r4pid reductton of the residuals, To illustrate this, the

rang,e of values of cos 0j and cos 0k for which lljkl _ C (a constant ,,

taken to be 0.9_), is represented in Figure 4 assuming Ax/a - .' . for

dlflerent valueq of the Courant number v = ah/Ax - bh,'hv, On this tlgure, the

corners (Ices 8ll - 1 or Ices 0...i= i) are interpreted as high frequency

regions, and the,neighborhood of the lines cos Oj = 0 and cos 0k - 0 as

low frequency r,.glons. The circles represent the values actually achieved

by cos 0j and ,:os 0k for a mesh containing i5x15 interior grid points.

Tiledomain
lljkI I C consists of two strips that converge towards the io_

frequency regiou when At increases.

i
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Figure 4.- The domain [_jk I _<C for a given CourenC number.
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4! From this, one concludes that o large time-step shoutd be efficient at
low frequencies, but also, that a sequence from a small to a large tlme-step

should be efficient by net privileging any particular frequency band.

These coneepta have served as a gu_dellne for the numerical experlmen-

ration of the next chapter.

1978018852-036



33

Ill. NI_qERICAL EXPERIMENTATION ON STEADY-STATE CONVERGENCE

,I In this chapter• a model problem governed by the Euler equations is
Y

solved numerlcal.ly to compare the iteratlve convergence prc.perties of the

modified algorithm, given by Equation (3)• to those of the base algorithm,

glw,n by F.quatlon (2).

I

A. Model Problem

' A model transonic flow problem was selected to test the convergence of

the modified differencing. In the past the transonic flow about a nonlift-

ing biconvex airfoil with llnearized boundary conditions has served as the '"

prototype problem for relaxation algorithms and so this problem was used _,
i

herr,. A variable grid with clustering was used to resolve flow-fleld

gradients (see Figure 5)• but the equations are solved on a uniform trans-

fern planu by introducing simple stretching transforms. 1

The :_olution proredure is _s follows. The values of the conservative ]

variables at interior points are first advanced from some starting solution, i

usiug either Equation (2) or Equation (3) with h = At. (The Euler implicit i

method (8 = I) is preferred here to the trapezoidal time differencing• i
method (0 = I/2) which is nondisslpative (see Section IIC), because the

emphas_s, in these numerical tests is on steady-state efficiency.) Then• i

very simple boundary conditions are applied. Free-stream conditions are

enforced at the inflow and upper boundaries. Along the body, the y compo-

nent of v,,loclty is obtained from thin airfoil theory:

v = U,_(dy/dx)B (63)

where U® is the fre,,-stream velocity, and (dy/dx)B the body slope which
#

is .Lspecified function of x. All other unknowns are obtained bv

l
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EXTRAPOLATION \ EXTRAPOLATION
v = U_ (dy/dx)B

Figure 5.- Sketch of the computational domain.

DRIG]_TALPAt-t,.,
l_, tO0_ QuahrrY
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t (zeroth-order) ,_xtrapolations. Higher-order boundary conditions improve ._

: accuracy, but are deliberately avoided in this study because they can stg-

' nlfJcantly degrade the stability and convergence properties that one would

*_ prefer to i_olate " i
Jb

, B. Resul ts

' Results for a lO-percent-thlck biconvex airfoil at M_ = 0.84 are

shown in Figure 6, and compared to a potential solutlon by Holst [8]. It

should be noted that a coarse _;rldand simplified boundary conditions have

been used in order to test a wtrlety of parameters. Much better solution

accuracy _s obtained by grid refinement and use of more accurate boundary

conditions. Detailed solutions of this nature are aval]able in [4].

The solution shown in Figure _ was obtained using either Equation (2)

with a nondlmenslonal ,_t= 0.03 and ee = 0.03, or Equation (3) with a

• nondlmensional At = 0.38, ce = 0.38, and ti - 2_e. These values were

,i
each found to be close to optimum by a trla[ and error process. The con-

ver_:ence histories for both ca,,_esare show_ in Figure 7 where root-mean-

'1
sqtmre residual error as well as the average difference between the con- i

I

ver_..edand intermediate Cp d_str[butlons are indicated. ._ecall that the I
!

boul_dary conditions are applied in an expllcit-llke manner, which is I
!

expt.cted to slow the more rapidly converging case, that is, Equation (3) 1

morl stgn_flcantly than Equation (.:),which uses more time-steps. Figure 7 i

i
shows that the _nodiflt,d differencing converge,s to stead)" state about 8 times !

i

original scheme. This experiment tends to verify the coq- ! ,

faster than the

clu:;',on dlawn from thv model problem - a large value of At can be effec--
1

tlw. in a(hlevi,lg morv rapid steady-state convergence.

I"
#.
I
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10%CIRCULAR ARC (Moo= 0.84)

HOLST-1
• PRESENT CALCULATION (ee = At)

-.8 • •

°.4

Cp°

Cp -.2

.2

.4

.i
.6 ! 1 I 1

0 .2 .4 .6 .8 1
x/c

Figure (,.- Converged pressure distribution along the airfoil. ,

m
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_ / BASE ALGORITHM

"(-J _P _ '/ el= 0

-O E_ _t = 0.03
I.IJ

MODIFIED

10 -2 -- ALGORITHM

-_t = 0.38 \
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Figt_rc 7.- Effect of using numerical dissipation implJcttlv (Eule: implicit

diffe,encing scheme wt_h e e = At).

J

i

1978018852-041



38
¢

In these exper*_ments, the starting solution was taken t) be the one

obtained after 25 applications of the base algorithm (At = Le = 0.0",,
• i

,_ c i 0), Kith all the properties initialized to their free-str_-am values
,t

, and gradually introducing the body by increasing with time tke body slope

"- (dy/dx) B from 0 to its correct value. In this way, impulsive starts were

avoided.

It must be noted that the ratio of c i to r e can significantly tnflu-

enct' __he convergence rate. It _ias verified that for ce = At, and a single

optimized tim-step, this ratio could optimally be set equal to 2 (for the

Eulvr imp]iclt method), as indicated in Figure 8. For larger values of I

thlv ratio, the dissipation term added implicitly excessively stabilizes the

transient behavior of the solution. For smaller values of this ratio, the

coe]f.*cient _-e'and consequently At = ee, must be redtlced for stability

(see Figure 3b), and this reduces _.herate of convergence.

The effect of using a sequence of At is indicated In Figure 9. In

order to ,;implify the optimization of the sequence, the fol owing fcrmula
m

" was used

: tn_l e
i Atn = At I + IkN - 1 ] (AtN - At :){ #

,t
-i

t where n - 1,2,. .,N foe a cycle of N time-steps, e = 2 in most experi-

i[ ments, and At I and AtN were optimized. The data show that a sequence of

, At is eftecttve but not as t_uch as one might expect. The sequence of 6 At

'_ is nbout 10 times more effective in steady-state convergence than the

origlna! scheme. The data shown are for optimum values of ce, tI' and At.

In (omparison to the ,;amescheme based on using a single optimized time-step,

)

a soquencv of parameters saves 50 to 75 tlme-steps out of 150 to 250 time-steps,
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Figure 8.- Eftect of the ratio of r( to 'e (Euler implicit differencing
scheme with c e = At).
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SYMBOL N Lit1 _t N

0 I 0.38 0.38

V 2 0.17 1.40
Z_ 4 0.11 2.60

O 8 0.11 2.50

r'j 8 0.11 2.25
10 "1

10-3

lO-' 1 [ I I I I _i i
0 50 100 150 200 250 300 _50

ITERATIONS, n

Figure 9.- Effect of usln8 a sequence of tlme-steps (Euler Imp]iclt differ-

encing scheme wl_h £e " At and _i = 2re)"
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dep¢.nding on what solution tolerance is desired. In this case, plottable

Iaccuracy Is actually achieved after 150 tlme-steos with the most effective

sequence. Again the model problem preulcts the iterative convergence proper-

tie_ of the more compllcated flow, and the use of a sequence of tlme-steps is

also an effective way to accelerate steady-state convergence. In these tests,

the optluum values of At I and AtN were found to correspond to a limit of

stability. It was also noted, that at this limit, the average value of At

I. . for a cycJe of N timc-stcps is ab_,t the s_me for all the cases shown in

Fig_,re g. I

Note that more sophisticated procedures for controlling various param- _ i
eters would lead to bettez convergence rates. Tn particular, it _Jas

Iobserved that a more rapid convergence could be obtained (for this problem)

by setting ei = 1.02Ee (instead of Ei - 2Ee), Ee --At and choosing a !

sequence of tlme-steps that Includes one or two that are sufflciently large

for (El, _e) to fall in the unstable range. It also appears that the i_

operatlon_,l range [Atl, AtN] should be optimized with the solution itself,

tha_ is with the iteration counter n. It is most likely that these would

produce better [mprow.ments. Nevertheless, they have been avoided here

because oJ their lack of simplicity and generality.

Sensitivity in rate of convergence to nonoptimality is weaker if N
Q

is large. For example, Figure I0 shows that for a cycle of 6 time-steps, !

• if At I a_d At6 are set equal to half of their optimum values, &t_ and Ate, !

the algorithm, over the first 300 steps, loses less than 20 percent in rate

of c'onverFence, and remains as efficient as it is fo_ a single optimized

tlme-step.

i

!

N&
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_t

° 1

t

10-3 -- Z_ A SINGLE TIME-STEP

At = At* = 0.38 (OPTIMUM)

-_-- At = 0.5 At*

O A SEQUENCE OF SIX TIME-STEPS

--O-- &t 1 = &tl* = 0.11,&t 6 = &_6* = 2.50(OPTIMUM)

-'0"" _t I = 0.5 At 1., At 8 = 0.5 At6*
1

10-4 J, J l I [ i J
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ITERATIONS. n

Figure i0.- Sensit_vity to nonoptimallty (Euler implicit differencing

scheme wlth Ee - At and cI = 2ee).
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' The v;fect of varying the exponent e for fixed _t i and At 6 Is

indicated in Figure 1!. As e decreases, the average time-step increases

and so dol, s the rate of convergence until nonlinear instability occurs

(e _-1).

Sensitivity in .'ate of convergence to free-stream Mach number Moo was

also studied as indicated in Figure 12. Three cases were computed using

!

_he same _;equence of time-steps; that is, the sequence was not optimized

, for H_,. The data indicate that the implementation of implicit smoothing,

and the use of large time-steps extend to subsonic and supersonic regimes

as well a,; transonic regime.

The influence of the boundary conditions on the rate of convergence

was also investigated. In this test, a sequence of six tlme-steps given by

' At n = 0.05, 0.2, 0.45, 0.8, 1.25, and 1.8 was used, and ce = At = ci/2.

Thi_; sequt,nce was not optimal, but this is not believed to have had any

importaac_,. At first, a fully converged solution was obtained. The start-
ing solution was then constructed by increasing by 5 percent the converged

J
solution at interior points. The rate at which this dlsturbsnce could be

eliminated, for some given boundary conditions, was then evaluated by corn-

puling thi' following estimate tot t:_espectral radius of the iteration

n_strix:
F

" SO

_ _RMS3oo/PMS2 50 i

where RM:;n is the root-mean-square residual error (the rlght-hand side of 1'
{

Eqtmtlon (3)) after 11 applications of the algorithm. An estimate for the

number nio of time-steps required for a reduction of the residual errors

by a factor of lO was then computed according to the formula:
.r

t.
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! 11
I

e=3

2.5

10-2 - 2

1.5

1.25

10-3 _ I l l
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ITERATIONS, n

Figure 11.- Rate of convergence for var:[ous se .... ces of time-steps (Euler

implicit differencing scheme wlth ce = AL and ci = 2Ee).
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" ._ 1, I I 1 I I I

10-4 0 50 100 150 200 250 300 350

• ITERATIONS, n

Fi):ure 1',!.- Effect ot the free stream Mach number (Euler [mpllcit differ-

' enciny, scheme with Ee = At and EI = 2Ee).

1W ,_.

1978018852-049



46

' n10 = llcologlO(P)

Four tests were made, In these, the inflow and upper boundary values were

fixed to free-L_tream conditions as normally done. However, the body bound-

ary and outflow boundary values were either fixed to their converged values

or variable, as permitted by the regular extrapolation procedure. The

values of 0 and nl0 obtained in the four cases are collected in Table i.
w

The results show that boundary conditions have a very strong effect on con-

vergence properties. By fixing the body-boundary values (although this is

impractical since it requires prior knowleUge of the solution), the rate

convergence doubled from what it was in the regular procedure. This favor-

able effect is even stronger if instead the outflow boundary values are

fixed. This case is more practical for transonic flow applications where

the properties at the outflow boundary can be fixed to free-stream values

without significant degradation of the solution accuracy. If now all four

boundaries are fixed, an improveme**t in rate of convergence by a factor of

4 is observed. This experiment indicates the strong dependence of the

iteratlve convergence properties of the algorithm on boundary conditions,

and opens a possible area of investigation for future work.

Table i. Influence of the boundary conditions on the rate of convergence

i 'Outflow boundary Body boundary
values values 0 nl0

Extrapolated a Extrapolated a 0.98800 191

Extrapolated Fixed 0.97633 96

Fixed Extrapolated 0.96881 73

Fixed Fixed 0.95064 45

aRegular procedure.
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! Finally, the effect of using only second-order smoothing, explicitly

as well as implicitly, was inw, sti_ated. For this test ce was set equa _

to At/2. The base algorithm (_i = 0, and ee = At/2) was found to operate

opt_mal!y with At = 0.22. if instead, a sequence of t_me-steps is

empJoyed an improvement in ratu of convergence by a factor of 2 or so is

ach:ieved, as shown in Figure 13. This test also shows that the use of

, second-order smoothing conslderablv increases the rate of conw, rgence of the

regular algorithm (ei = 0) itself. However, unacceptable losses in accuracy
J

occur if this type cf artificial dissipation is employed to ca]culatc a

flow field with a large change of gradient in the solution. Evexl it.'the

simple bic'onvex airfoJl calculation considered, the solution at the leading

_nd _railing edges is noticeably degraded, although the shock wave is still

adecluately resolved.

One ¢'oncludes in general that large At is very effective and that use

of a sequunce of At can be perhaps twice as good. The algorithm is not i

overly sensitive to nonoptlmum features, However, better rates of improve-

i
ment seem possible (e.g., the added effectlveness when only second-order |

dis:;ipation is used, better boundary condition procedures).

One remarks that some ideas have proved effective as well in more com-

plex flow calculations [4-6]. However, the additional ,_ensitivity of the

mor_, complex flows to nonlinear instability forces the use of n_uch smaller

_, tin_,-step_. Consequently, the improvement in rate of convergence is much

le,=,,;- typically a factor of 3 or 4 over the base algorithm.

4"
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J 1/

BASE ALGORITHM

10-1 ei = 0 i

At = 0.22

c

10-2

4

MODI FIED ALGORITHM

10-3 -- ei = 1/2 ee•

Atn = At I + (-n'_) 2(At6-Atl)

At 1 = 0.05, Ate = 1.50 !

\ ,lo-4 _____L ...... l 1 1 l I 1 , ,_
0 50 100 150 200 250 300 350

ITERATIONS, n ?

Flgure 13.- Effect of u_tng second-order smoothing explicitly as well as

implicitly (Euler implicit differencing scheme wlth ce = Atl2).

?

e
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! IV. ON THE EFFECT OF SPACIAL VARIATION OF ?HE JACOBIAN MATRICES

In the computatlc, r_ of transonic as well as subscnic flows, the eigen-

values of the Jacobian matrices A = [aE/'_,q]and B = [3F/aq] are real,

and of mixed sign. Tl:Is is the reason for adopting a tlme-dependent

approach, combined with the use of central space differencing whicb, in

, principle, produces purely _aglnary elgenvalues for the convect£ve

derivatiw, operators

Cx _2Ax) xA

l Cv (2Ay) 5.¢B (64)

¢

i The unconditional stability of the implicit algorithm, derived in Chapter II

for a scalar, linear model equation, relies crucially on this property. In

this chapter, the possibility of breakdown of this property for the Euler

' _ equations due to variable coefficients is examined.

Analysis [
A.

_ Ill tlais analysis, the matrix Cx is considered, in particular. A mesh

containln_t J×g interior grid points is assumed, so that the dimension of \
\

the matrix Cx is (JxK×p) 2 for p dependent variables (p = 4 for twJ-

dim,,nsional flows). For convenience, it is here assumed that the Jx',xp

componentt; of the solution vector q are ordered as follows:

t t t t t _ t t t [q" (qll' q_l ..... q,Ii' ql _' q ...... ' qJ2 .... ' qlK' q"*...... qIK)

(65)

i where qJk contains lhe p dependent variables evalvated at (xj, yk ).

I Then, making the slmplify[ng assumption that the soldtion vector q ,

is :;pecif:ied at the buundarles, permits us to ,write the matrix Cx as follows:

1978018852-053



5O

Cx ,, BDiag(Cx, k) (k = 1,2 .... K) (66)

where C,, _ is the fol!owing jpxjp matrix:
.b_ ..

11

Cx,k "= BTrid(-Aj-l,k .....O, Aj+I, k) (J = 1 2 ,J) (67)

-I in which Ajk [s the p'p Jacobian matrix A evaluated at (x l, Vk).

Cle_,ly, if A was some symn_,tr[c constant matrix, the matrix Cx

woold be real skew-symmetrlc and would indeed have purely imaginary eigml-

calues. However, one may question whether this property carries over to

the general case where A is a nonsymmetric p×p matrix subject to appre-

cial,le variations from point to point, due to the nonuniformltv of the mesh

as well as the solution itself. The purpose of this analysis is precisely

to bring borne i_formation about this question.

It first appears from Equations (6_ and (67) that the elgenvalues of

the matri_ Cx are obtained by collecting those of the matrices Cx, k

together. For thls reason, only one of these matrices will now be consid-

ered, with the subscript k omitted in what follows.

It i._, known that the Jacobtan matrix A for the Euler equations can

be dtagonallzed by a real transformation T, so that:

A = TNr -1 (683

whele A = Diag(a m) and m = 1,2 .... p. Explicit expressions for T and
\

_{ A _an be found in [18]. For example, for a two-dlmensional flow, if \

Cartesian coordinates are used: a I = a" - u, a 3 = u + c, and a" = u - c

t where u is the x component of the velocity vector and c i.3 the local --

speed of ,,;ound. For the same case, the eieenvalues of the Jacobtan matrix

B :_t'e b = b 2 b _= v, l, _ = v + c, and = v - c, where v is the \" corn-

pom,nt of the velocity vector,
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Now, construct the following matrix

.'_--BDiag(iJTj ) (69) ,

and perform on the matrix Cx(truly Cx, k for some k) the following sim-

ilarity transformation :

c_- _-Ic_._-

, = BDlag[(-i)JTj l]BTrid(-Aj_l, O, Aj+ I)BDIag(ijTj) (70)

•, io

where

!

o = BTrld(T;ITj_IAj_ I, 0, T_ITj+IAj+ I) (71)

It Js desirable that all the eigenvalues of the matrix o be real and for

all those of the matrix Cx to be purely imaginary.

Note that if the flow variables are continuous, the matrices TjlTj_ I

and T]IT_a41 depart !rom the Identity matrix only bv terms of 0(Ax) For

, J

this reason, one expects the eigenvalues of the matrix _ to b_ well repre-

sented by those of the fc;lowing .mtrix:

o' = BTrid O, Aj+ I) -" o (72) ',

\
In _mking this approximation, one assumes the effect of variable coet'fi-

cients to consist _ri_mrIlv ol .he varlat_-,n of the ¢:g_.,nvalues of the

• matrix A. rather than the variation of its eigenvectors. This assumption
.I

is t,rode here, and the next step consists of rearranging the rows and the

column q o_ the matrix o' to collect the eigenvalues aim (for given m)

tog_,ther. More precis;ely, for some nonsingular matrfx P, which corresponds

to a prodl,ct of permutations, the matrix

_" = n-]o 'r (73)
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?

which is s_nilar to the matrix o', becomes

o" = BDiag(rm) (m = 1,2 .... p) ('4)

where

m ,j
Fm = Trid(a__l, O, aj+ I) = 1,2,. .,J) (75)

Hence, the eigenvalues of the matrices o' and o" are obtained by collect-

ing those ,.f the matrices Fm. These eigenvalues must be real for those of
b

the matrix Cx to be purely imaginary. In this way, the analysis is

reduced to the one of p independent scalar problems. Thus, one is lead

to examine the eigenvalues of the matrix Fm for a particular value of m,

and to omit this superscript in what follows. This is done in Appendix G,
i

whose main results arc, repeated hece without derivation.

j l

i It turns out, that for all the eigenvalues of the matrix F to be

i real, it suffices that the following condition holds:

ajaj+ l _>0 (J = 1,2,...,J - I) (76)

This condition is met either when each eigenvalue aj of the Jacobian matrix

A has the same sign at all the grid points, or when it does change sign at

one or more grid points but vanishes exactly at one or more grid points

I before changing sign. The condition given in Equation (76) is not, however,
i
i

! nec_,ssary for all the eigcnvalues of F to be real. Nevertheless, this
i
I faw_rable result is n_,st unlikely to be true if this condltion is violated. ,I

_I To :_eethis, another result of Appendix G _s recalled. For this define

ilii_l (_))and _(_)+ by them follo}wing recurrence

sequences of coeffici_,nts am m

formulas :

('_) . S(')-1) + c_('_)
am+] m a2m+la 2m+2 m

"_ _m+l-(_) " am+l(V)apm+2a2m+3_(v) (77_

[
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whele m Is a uatural integer and \... 0.1,2 .... m, .,nd tile following

t

, conventions are adopted: %

(m) . t_(m) Itl "_ 1
m m

) (ZS)

: 6(- I _ = 0

These deftnttlo:_s being made. tt turns out that a necessary con.:[,lon for

all J eJgenvalues of the mat_ .x 1" to be real is that the coeflictent
i

(_,) (v)
,_ . tn case .I - 2m. or t_ 0 lu case i . 2m + 1, be positive form nl

d

* v - 0,1.2 ..... m. It Is easy to calculate in particular a (°) aad l_(°)

m mwhich ar', Riven by:

am 1 2 .

(79)

_(°)-a a. .a (_+__+... +__1__)m 1 2 2m-t-1 a 3 a .,.ii1+1

l (v) (v)i In _enera]o t_ and l- are polynomials of degree 2(m - v) of the eoef-
-I m m • ,_

i ftctents aj. and it is most unlikely that they all will remain positive if

tile condit Ion given tn Equation (71_) is violated at one or more grid points.

;t
In particular, .dtuattons where L_(°), alternately 6 (°). is negatt_,e should

III " m

be common. If this happens, the u_ltrtx 1' has an odd number of pairs of

purt, lv Imaginary elgenv.alues, say tr¢ and -1 r_ (¢ - 1,2 .... 2g + 1).!

'_I '1'o these correspond the re.ll etgenvalues _r¢ and re for the ,mtrtx ('x'

._ ' hail of which are negative. For trapezoidal time differencing .:ud arhltrarv

'._ tlmt.-step, or Euier implicit differencing and sufficiently large time-step,

'"; the.-.t' rt, al nt'gal tvt, elgenvalues produce numerical instability unless tht, v

are balanced hv a suftlctent positive contribution comtn_ from the smoothing

opelatol's. 'rh,._.;e unfa,,orable t,tgenvalues should, however, be of sumll

modult If Olaf. a:l,q'|mes '!lilt they at-e essentially determhlod hv tile entries

I '' n 1 '
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, of the matrix Cx in the neighborhood of the point where the alternation

of sign occurs (weak destabilizing e_fect). However, since the matrix '_x
41

. appears In the difference equation multiplied by At, the coefficients of

! the smoothing operators should themselves be kept proportional to At as

"i required for consistency,

In conclusion, it appears that a particular form of Instability due to
2

vartable coefficients may be triggered if central space differencing is

" used at a point where one of the eigenvalues of the Jacobian matrix A or B•

i changes slgn. However, use of numerical disslnatlon, proportlonal]y to At _

and In sufficient amount, should remedy thls type of instability, i

! In the following section, some numerical examples of this phenomenon !

i 'are presented for some scalar model problems, i

t ,

I B. Numerical Experiments on Scalar Model i
T

Equations with Variable Coefficients |

In the numerical experiments, the trapezoidal time digferenclng method i

was used because this method Is neutrally stable, that is nondissipatlve, i

for scalar linear problems with constant coefficients. In thls way stabil-

ity probh,ms due to variable coefficients could be isolated more easily. In _,
t

all the cases, scalar functions of the only two independent variables x and

t were considered. , i

t
In the first test, the following problem was solved I

ut + [a(x)(u- i)1x - eUxx= 0 (-I _<x _<I) } (80) I_u(x,o) = Uo(X ) [= 2 exp(-5x2)]

; I
where the wave speed a(x), chosen to be

a(x) - 4x/(l+ 27x4) i

!
i
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had the sign of x. For t - O, this probl,,m Is a rarefaction wave problem.
&

The characteristic curve in the (x.t) nlano haq the _!ope a_/a,. = !/"(x)0 - • .... ' -'" '

{ and Is pointing outward cf the do_ltn of integration at tile endpotnts
v

.

.._. x = 'l. For this reason, specifying the solution at tht, se boundary points

wou]d here be ilaproper. Instead, in the numerical computation, (zeroth-

order) extrapolation was used at these points. In this way, some sn_ll

' positive terms were introduced tn the diagonal of the matrix Cx at the

upper-left and lower-right corners. The numerical computation of the
i

elgenvatu:.s of the matrix Cx confirmed that these terms produce some

posSttve contr!l_utions to the real parts of the etgenva]ues (compared to

the case where the solution is specified at the boundaries), anti thus have

a favorable stabilizing effect (outflow of residual errors). Despite this,

with c = 0, the trapezoidal time differencing method _,as found unstable

when using a mesh with grid points located at xj = (j - 16.5)/15

(j : 1,2 .... 32), so that a(xl6)a(XlT) - 0. Thls instability remained

for value:,of _ less than 6 × i0-_, or so. For larger values of _, the

numprical solution renmined hounded and in fact convergent, at all tilegrid

points, t(, the exact steady-state ,_olution of this problem which is

u(x,,_) = 1. This steady-state solution was not altered by the smoothing

terms in lhis Ideal cnse where u(x,,,,)is constant in x. It was also

verified lhat a stablu but not convergent (to steady-state) al_lorithm was

obtained lot c = 0 by locating tilegrid pc ints at xj = (x - 16)/IS

(J : 1,2,.... '.It)so that positive values of a(xj) were separated from

negative (,nesby a true zero.
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In the remaining tests, the following class of problems was considered:

ut + [_(u,x)]x - _Uxx- [¢(u=(x),x)l.x (0 _<x _<i)

u(0,t)= u_(0)
(81)

u(l,t) = u.(1)

u(x,O) = Uo(X) (specified)

in which uoo(x) = exp(-Sx2), and the functional forms of ¢ and uo varied
l

from case to case. The particular form of this equation was chosen anticl-

, patJng thmt for sufficiently sl,mll _, the stationary solution of thls '

problem would approximate the [unction u_(x). This function was chosen

' rather arbltrarlly but nonuniform so that _Uxx # 0 at the steady state.
i

Mor_,over, in the numerical computation, the term appearing on the right-

,! hand side of the differential equation, that is the source term, was cen-

trally dlJferenced in the same way that the corresponding term of the left-

hand side of the equa ion, that Is, the flux term. In this way, the

smoothing term CUxx was entirely responsible for the discrepancies

between u(x,_) and uo,(x).

Although, to the author's knowledge, specifying the solutions at the

bou,daries always leads to a well-posed problem for c > 0 (assuming smooth

data), th_s is not necessarily the case for e - O, as mentioned prevlouslv.

i In particular, for the latter case, the following _nequalities ,

au x=O

_u _<0 (83)
x-I |

!
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should hold for the characteristic curve to point inward the domain at the

boundary poit,Ls. In all the cs.qes that follow Equation (82) applied, but

not necessarily Equation (83). This question will be discussed for specific

examples.

Ten experi,nents were conducted on linear test equations that were

obtained by letting the flux funct[en _ be of the form #(u,x) = a(x)u.

These experiments are defined in Table 2. For _he first three cases, a(x)

was chosen strlc_.ly positive. For this reason: the implicit a1_orithm was

routed stable. However, adding artificial dissipation was found necessary

{.

to obtain a steady-store solution. For a rather small value of _ (Test
i

No. 2) the numerical solution is very accurate as shown in Figure 14. For

this case the slightly improper boundary condition u(l,t) = u,,,(1), does

not disrupt the stability of the algorithm (even for c = 0), and does not

seem to degrade the solution accuracy significantly (for c _ 0). This

Table 2. Numerical experiments for linear test equations

Test No. a(x) Uo(X) c .I Comments

] 3.5-3x exp (-5x) 0 52 Neutral Iv stal_le

3.5-3x exp (-5x) O.025 52 Convergent

3 3.5-3x exp (-5x) O. 025 52 Convergent

4 l-3x exP (-5x ? ) 0 52 Unstable ,_

5 l-2x exp (-5x') 0 62 Neutrall v stable

" 6 l-3x exp (-Sx) 0 62 Neutrally stable

7 l-3x exp (-Sx) 0.i 52 I
,%

8 i-3x exp (-Sx) 0. l 62 Convergent

exp (-Sx) 1.0 52 poor accuracy :ii
9 l-3x

I0 l-3x exp (-5x) 1.0 62

....

t
i ,
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+
': ¢ = a(X}U

a(X) --3.5-3X

e = 0.025

:" DT/DX = 10

'+ -- EXACT STATIONARY
SOLUTION (e = 0)

O CONSISTENT B,C.

1 Z_ INCONSISTENT B.C.

U(X)

Figure 14.- Steady-state solution of a linear equation with a positive flux
gradient and itsmall amount of art_ficlal dissipation added.

[
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shows that the wel]-condit_oned nature of the algebraic system of difference

eqL_tions is not necessarily equivalent to the well-posedness of the differ-

ent_al problem that one attempts to molve. The result of Test No. 3 is also

indicated on Figure 14. It appears that in applying a quite erroneous

boundary condition at x - I results a perturbation in the steady-state

solution that is localized to a small neighborhood of this boundary. This

|

is another aspect of the well-conditioned nature of this problem when
t

a(x) > 0 everywhere.

In the experiments numbered 4-10, a(x) = i - 3x so that the sign of

a(x) switched from positive to negative at x = 1/3. Without dissipation

added (c = 0), and a mesh of 52 grid points, the algorithm was found

unstable _ven _[th the exact stationary solution for initial solution (Test

No. 4). However if 62 grid points are used, the _:umerical solution remains

bounded (Test No. 5). This is because positive and negative elements of

the sequence aj = a(xj) are separated by a true zero in the latter case.

However, the solution does not converge to a steady state for a different

initial solutiou (Test No. 6). If dissipation is now added (E > 0), steady-

state convergence is obtained but the accuracy of the steady-state solution

is very poor, a_ shown on Figure 15 for Tests No. 8 and No. i0. One observes

on this figure, that if _ is too small, say c = 0.i, a peak appears in

this solution near x = 1/3. The reduction of this peak requires excessive

• amounts of artificial dissipation which degrades severely the solution

accuracy. An euergy concept can explain the existence of this peak. For

this purpose, define the following "energy" function:

iE(t) - u(x,t)dx (84)
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= a(X)U
a(X) = 1-3X

1.2 DT/D.___=X;x1OcT STATION A Ry
SOLUTION (e = 0) ;_

@OOOOOOOO O e = 0.1
• _OO0 00 A e = 1

'°1_ %
I -%_.

•8 _,.,AA 0

ulx) \ _'A o

\ "",, •
• \,,oo

\ N o

X *x

_°°Ooo %%
l i , i i

0 ,2 .4 .6 .8 1
X

Figure !5.- Steady-state solution of a llnear equation with a flux gradient
cha,lglng ,',Ignand some artlflc_al aissipation added.
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and consider the case e = 0 for which

1#

E'(_) = J ut(x,t)dx
o

= i,[u_(x),x] - O(u,x)) x dx
o

= o (85)

• since u(x,t) is constrained to equal u_(x) at x = 0 and x = i. As a

result, E(t) is a constant (nondissipatlve phenomenon). Since, also,

the characteristic curves are convergent at x = 1/3 (compression wave),

this energy is accumulated at this point, in the limit t + _. In fact, it I_

can be obtained directly from the differential equation that

u(i/3,t) = u_(I/3) + C exp(3t) (86)

for some constant C, while for x # 1/3, u(x,t) converges to u_(x) in

finite time. Hence this problem does not have a steady-state solution in

the ordinary sense, unless the starting solution Uo(X) is trivially chosen

to be u_(x). These experiments indicate the dlf_iculties encountered in

attempting to auhleve the stationary solution um(x) by a viscosity method,

when a(x) c_%anges sign.

Very similar results were obtained for nonlinear test equations. For

these, si_ experiments, defined in Table 3, were conducted. Here, the start-

ing solution Uo(X) was obtained by adding to the stationary solution u_(x)

. a second-degree polynomial q(x) = 5x(x - i) that is zero at the boundary

poi:*ts and negative at interior points. In this manner, negative as well

as positive values appeared in the initial solution. Here the flux function

was chosen to depend on u only.
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Table 3. Numerical experiments for nonlinear test equations

Test No. _(u) Uo (x)-u_(x) e Comments !

r-. F_. 1Ii u + u3/3 .,_i) O Neutrally stable

12 u + uq/3 5x(x-l) 0,025 Convergent

13 u + u3/3 5x(x-l) 0.005 Convergent and

very accurate

14 u2/2 5x(x-!) 0 Unstable

15 u2/2 5x(x-l) 0.025 Convergent •

16 u2/2 5x(x-l) 0.005 Convergent and

very accurate

For the first three cases, the wa-,e speed a(u) = _/3u = i + u2 > O,

and instability could not be triggered, Without dissipation added (Test

No. ii), the solution does not converge (to steady state), bu_ remains

bounded. Th_s is indicated by Figure 16 where an intermediate solution,

obtained after 104 auplications of the algorithm, is shown. On th_8 figure,

the values of u at the points xI, xB, x5, . • fall on a smooth curve,

and so do the values of u at the points x2, x4, x6, . but the two

curves are distinct. This is because central space differencing does not

couple the two subsequences (ul, u3, Us, . . .) and (u2, u_, u6, . .).

This is a known reason for requiring the use of artificial dissipation when

a leap-frog type differencing is employed, However, if a small amount of

dis_Ipation is added, the numerical solution converges to a steady state.

As an example, a very accurate solution obtained with £ = 0.025 (Test

No. 12) is sho_ in F_gure 17. For an even smaller value of £ (Test No. ]3),

exact stationary solution, u_(x), and m_erlcal steady-state solution are

, ind_stln_ulshab[e to plottable accuracy.
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= U+ U313
4_

-¢ 1.4 c -- 0

¢,,+, DT/DX = 5 (
•++ T = 1000

, _ A -- EXACT STATIONARY
1.2 '_' zz SOLUTION (e= 0)

i zs O U(XJ), J = 1, 3, 5....

,_ A A U(XJ), J = 2, 4, 6....

: * 1.9 _ & Ao\4

/+: O_ 0 A

•+ .8 A ;r
_ U(X) "

A

;++_, .6 0 0 0_ & ,_

.4 " 00 _X&_ % A

0 L_0 z_

: .2 I'

•

0 0
_ •

+_• 0 0 0 0 0 0 0 0 0'_, -.2
+'+

• I • I I , i ,

0 .2 .4 .6 ,8 1
• X

.

i Figure 16.- An tnterm(,dlate solution of a nonlinear equation with a positive

flux gradient and no artificial dissipation added.
I

I

t

!
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t,
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= U + U3/3 l

Ie = 0.025

DT/DX = 10

SOLUTION (e = 0)

l O NUMERICAL SOLUTION

lq
1

i

.8

U(X)
t

l .6

_ o

.4,

.2 __ .....l, I _--
0 .2 .4 .6 .8 1

X

Figure 11.- Steady-si:ate solution of a nonlinear equation with a positive

flux gradLent and some a :ificial dissipation added.
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The last three experiments deal with a modified B,,rgers' equation

obtained by letting _ = u?/2. In this case, the wave speed a(u) = 3#/3u = u

changes slgn twice at the initial time, but not at the steadv state, it no

dissipation is added, instability occurs (Test No. ]4). However, for c

sufficiently large, tile solution does converge. _ _..'e 18 shows tile stea#y-

state solution which is obtained for _ = 0.025 (Test No. 15); again, an

q

even more accurate solution can be obtained for a small_ value of t:, say

, c = 0.005 (Te_t No. 16). Here the solution accuracv _s not significantly

degraded by the addition of artificial dissipation. This tepds to indicate,

for this simple prohler, at lea.qt, that viscosity methods converge when the

wave speed a = ,_#/,_u does not change sig,, (at least) at tile steady state.

In conclusion, the experiments do confirm that a particular f_,rm oI

instability can bo triggered when the wave-speed a(u,x) = 3¢/3u, which

plays the role of an eiganvalue of the Jacobian matrix of a flu._ vector,

changes sign at some point, if central space differencing ' used at this

point. Severe solution accuracy degradation was experienced for a case

where the nonuniform steady-state solution was such that the altern,_tion of

sign in the wave-_peed remained at the steady state. This w.s to the

extent of making the practicability of viscosity methods questlcnable for

this case. However, the extension of this dramatic result to the solution

of the Eu]er equations is uncertain.

, C. Futthe:" Comments

The derivation ol Section [VA above has brought a rations]e, b,.sed o_,

matrt_ analysts only, to explain one o_ the reasons for _he neces.,ttv of using

artificial dissipation. It also suggests that better stabJlitv properties
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¢)= U2/2
" e = 0.025

. DT/DX = 10
EXACT STATIONARY

-.: SOLUTION (E= 0)

O NUMERICAL SOLUTION

*. .8 OO

U(X)
I

_ 0 0
.4

,i

: .2 O00OO_

• '

i _ ! I IL ,._
"j

'i 0 2 .4 .6 .8 1
X

)!_ Figure 18.- Steady-state solution of Burger,_ equation with a source term and
!| artificial dissipation added.
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would perhaps r,_,sult from simple modifications of the differencing at the

points where one , f the eigenvalues of the Jacobian matrix A or B c_anges

s ign.

m

For example, if the passage of say aj through zero is smooth, the

Jacoblan matrix could be synthesized at one point from a modif'ed eigen-

m

system in which aj would be set equal to mere exactly. This procedure

• ensures that the matrix Cx has purely imaginary eigenwllues only in the _"

cas,_,of a scalar equatlon. However, a reduction in the required amount of

ad_-d numerical dissipation would perhaps result from applying this

_° techn que.

Another procedure, applicable to the Euler implicit method, consists

of averaging conservati_e with nonconservative differencing. This gives:
/

C x - aX(_xA + A5 x)

" BTrtd[-(Aj_ 1 + Aj), O, (Aj+ 1 + Aj)] (87)

which would generate a real sko,.,-._-,mmetricmatrix if A we,c svmmetrlc,

whith is re, t, tn general, for the Euler equations, ltowever, a mort: favor-

able eigenvalue-spectrum can be anticipated from this. Using different

arguments, Kreins and Oliger [19] proposed essentially this for Burg,,rs'

equation. Since A and E are not themselves symmetric matrices, for the

J

airloil calculation of Chapter III, using a uniform mesh in thls test, the

:I algorithm was found to be stable with only cwlce larger time-steps when

i "
1 using this technique.

't
¢

l

1

i ii oiio ti • i__ _ i
-- " "l

1978018852-071



68

t,

V. CONCLUSION
i

, in this work, two conjectures were first made. First, it was claimed

that the domain of unconditional stability of the base algorithm could be

".i enlarged by introducing artificial dissipatLm_ in the implicit part of the

differencing, as well as in the explicit part. Second, it was anticipated

that the iterative convergence properties of the algorithm could be Improved

by the use of larger time-steps per se, but also by the use of a cyclic

sequence of time-steps.

A heuristic stability analysis brought a theoretical support to the

first conjecture. This analysis suggested that the time-step and the dissi-

pation term added explicitly could both be arbitrary, provided the dissipa-

tion term added implicitly was kept sufficiently large. In particular, the

two dissipation _erms could be kept proportional to the time-step. In this

way, the consistency condition was met, and the steady-state solution was

independent of the time-step. This has been well confirmed by the numerical
i

experiments that were conducted on a _nodel transonic flow problem governed

by the Euler equations. In fact, for this problem, it has neve_ been pos-
\

sib!e to find a large enough value of the time-step, for which any adjust- \

ment of the dis_ipation terms would not remedy stability problems. However,

for extremely large values of the time-step, the required amount of artifi-

cial dissipation was so large, that the iteratlve properties of the algo-

rithm were degraded, although the numerical algorithm was stable. This was

attributed to nonlinearities. For this reason, it was found that if a

single time-step was used, this time-step could be optimized to a value

roughly one order of magnitude larger than the one permitted by the base

|

K

i
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d_ferencing scheme. In this manner, the modified algorithm was found to

";_ converge _bout eight times faster than the base algorithm. Even mor,_ rapid

convergence was obtained by using a sequence of time-steps. With the best

sequence, an improvement in rate of convergence by a factor of I0 (over the

base algorithm) was observed.

Various numerical experiments have shown that the modified algorithm

was not very sensitive to nonoptimum parameters. In particular, approxi-

mately the same convergence rate was obtained when using a sequence of

elt!:c_ four, six, or eigI:ttime-steps. Also, the nonoptimality of the

sequence of time-steps, for a fixed 1,umber of them, did not seem to degrade

the convergence rate severely.

,. Fina]ly, a parti('ular form of instability that the algorithm is sub-

Ject to has been attributed to the spacial variation of the Jacobian

i matrices of the Euler equations. This instability found to occur when

central space-differencing is used at a point where o. : of the eigenvalues

of either one of the Jacobian matrices changes sign. Addition of a suffi-

cient amount of artificial dissipation remedies this type of instabilits".

New,rtheless, two techniques have been proposed that could reduce the amount

of required artificial dissipation. More concl-sive results on this topic

would, however, require further research.

ml
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VIII. APPENDIX A: _L_TRIX FORM OF THE FINITE-DIFFERENCE EQUATION FOR THE

CASE OF A SCALAR DIFFERENTIAL EQUATION

In this appendix, the (matrix) definitifn of Kronecker products and

: sums, and some of their properties are first recalled. With this back-

ground, the finite-difference equation for the case where the implicit

'I ' algorithm is applied to the two-dJ_ensional first-order wave equation is

derived in a form particularly convenient fcr the stability analysis of

. Section liB. _

iA. Some Background on Kronecker Products and Sums

The definitions and the essential properties of Kronecker products and

sums can be found in most books on matrix theory (e.g. [17] or [20]) The
' " i

propectie_ that are used in Section B of this appendix are repeated here,

without proof, for the reader's convenience. !

Let A and B be two square matrices of dimension jxj and K×K .:

respectiw_ly. The Kronecker product of A and B is denoted by A _ B and

defined as the square matrix of dimension JK×.TK given by:

al2B . aljB

a21B a22B • . a2jB

A ® B - . (AI)

ajIB Aj2B . • . ajjB

The Krone_'ker sum of A and B is defined as the matrix A _ IK + Ij _ B

where Im is the mxm identity matrix.
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, I
E

The following properties are true:

.; b i' (A %) B) %)C = A _ (B eC) _A2)

• (A + A') e (B + B') = A e B + A' _ B + A _DB' + A' _D B' (A3) _

_' (A _)B)(A' _)B') = (AA') _ (BB') (A4) i

i where A' and B' have the same dimensions as A and B, respectively.

It follows from Equation (A4) that if A and B are nonsingular, then

so is A _) B and:

(A® B)-I = A-I _ S-I (AS)

An important result concerning the eigeneystemb of Kronecker products and

sums can be stated as follows: if %1, %2, .2 %j are the eigenvalues

of A and _I, _2, • • ', _K are the eigenvaiues of B, then _he eigen-

values of A _ B are the numbers %JPk and the eigenvalues of the Kronecker i

sum of A and B are the numbers %J + ]_'k" For both, the correspondin_

i eigenvectors have the form:

,

x2j yk

Zjk = i (A6) _ _i

\
_jJ yk

where xmJ is the mth component of the eigenvector xj of A associated .

to Aj, and yk is the eigenvector of B associated to Pk"

B. Application to the Finite-Difference Equation

In this section, the implicit algorithm is applied to the two-
%

dimensional fizst-order wave equation (Equation (i0)). The calculations

at& made assuming the solution u e0uai to zero at the boundaries, but the

..
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result would hold for other linear boundary conditlons as well. The equiva-

lence between operator notation (Equation (355 and matrix notation (_qua-

tion (115) is expliclted.

For this purpose, the components of the solution vector u are con-
5

ventionally ordered as follows:

u " (Ull, u12, ..., UlK, u21, u22, •.., U2K, •.., Ujl , uj2 , ..., UjK )t

, (A7)

' where, as usual, Ujk = u(xj, yk), J = i, 2, .., J and k = i, 2, .... K.

Let I_ and E;, F_, and E_ be the forward and backward shift operators

for the x and y directions. More vrecisely:

E_xu m (u21 , u22, .... U2K, u31, u32, •.., U3K, ..., 0, O, ..., 05 t

ExU = (0,0,..., O, ull, Ul2,...,UiK , ..., uj_l,l, uj_l,2, ..., Uj_l,K 5t
4

u " (ui2, U13 , .... O, U22 , u23 , ..., 0, ..., uj2 , uj3 , ..., O) t I

J5u = (0, Ull , ..., Ul,K_l, 0, u21 , ..., U2,K_l, .... 0, Ujl , ..., Uj,K_I jt

(A8)

where boundary conditions have been taken into account.

For m = J or K, let Im be the mxm identity matrix, and Em be

the following mxm ,mtrlx

• "0 I

0 1
4

- .

0 1

O.

,_
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+ + and E_ areIf the matrix representatiops _f the operators Ex, Ex, Ey, J

i'_ denoted by the same symbols as _he corresponding operators, it is _pparent

"_ that :

-_ Ex = Ej _ IK (AI0)

t ® IK (All)Ex = Ej

_y = Ij _ EK (AI2) .

Clearly, these equations also hold for periodic boundary conditions, if the

lower left corner element of _ in Equation (Ag) is set equal to one. 1

t = E_IIn this case, Em so that forward and backward shift operators with

the same subscript are inverse of one another.

Linear comb/natlons of Eqtmtlons (AI0) through (A!3) and of their

powers and use of Equations (A3) and (A4) yield the desired finite-
t

difference equation (Equation (ii)).
,f

\
o
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IX. APPENDIX B: EIGENSYSTEMS OF TRIDIAGONAL MATRICES

In this appendix, the eigenvalues and eigenvectors of tridiagonal _.

matrices are recalled. This is done in two cases: (I) periodic boundary

conditions, and (2) specified boundary data°

Consider first the case where periodicity is eDforced at the boundaries,

so that the genera] tridiagonal J×J matrix has the following form:

_b c aN

a b c

a b c

A = Trid(a,b,c) = • (BI) !_

a b c

.c a b

Define a sequence of vectors Xj (J = i, 2, .... J) by

Xmj - ll/J exp(miSj) (B2)

where Oj = 2_(J - l)/J and m = i, 2, . ., J. If Equation (B2) is alse ,#

applied fer m - 0 and m - J + i. the periodicity boundary conditions:

Xo, j = Xj,j 1

: Xl,j = Xj+ l,j '

._ are found automatically satisfied by Xj. Now compute AXj:

• (AXj)m " AmkXkJ

"'aXm- I,J + bl(mJ+ CXm+ i,J

_: - _jXj (B4)

where

\j - a exp(-iSj) + b + c exp(iej) (B5)

J
j

l q
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i ;• 1

_,'I thls shows that Xj Js an elgenvector of A associated to the elgenvah, e

, ': _j. Now compute the following inner product:

j

: tXk i'.'_, (Xj'Xk> = XJ = 7 exp(mi_) (B61
,, _=I

; where a = Ok - ej = 2_(k - J)/J. This gives

_ <Xj,Xj) = i (B7)

0 ;
for all j, and for j ¢ k: I

'_;_ (Xj,Xk) _ _ exp(l_) exp(ia/ - i

= 0 _

I xj! Hence, the eigenvectors (J = i, 2, . . ., J) are orthonormal. The matrix _ _.

X that d_agonallze_ A, which contains these elgenvectors for columm vec-
tors, is thus unitary: -.

°; X-I = X*(adjolnt of X) - X" (B9) :
5

Consider now the case where the components of the solution vector are ,_'

constratm,d to be zero at the boundaries. For tbis case, the gen.'ral J_J

i trldlagomll matrix is given by Equation (B1) in which the upper-right and

low_r-left corL_er elements of the matrix on the right-hand side o2 this '

equation are set equal to zero. fhen, define a sequence of vec;.ors X.
J

(J = i, 2, ., J) by:

- Xnj = _ + I)(¢a_7_.)m sin m_j (BIO)

where ej = 1,J/(J+ i) and m = i, _,"_ . . ., J. If Equation (BIO) is also

appiied for m = 0 and m - J + I, the boundary conditions

i '

Xo, j - Xj+l,j = 0 (BII) '
*

are found automatically satisfied by Xj. Now compute AXj:

L
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"I

= aXm_l, j + bXmj + CXm+l, j

1
= XjXmj (BI2)

where:

sin(m - l)@j sln(m + l)@j

_j " a_ a_7_) -I + b + c(a_7c)
sin m_j sin m6j (BI3_

" b + ¢_ac-cos @jI

which is found independent of m as expe".ted. This shows that Xj is an

eigenve _or of A associated to the elgenvalue Xj.

Now consider the particular case where a, b, and c are real, with

also a = c, and redefine the eigenvectors of A to De _ .. Clearly,J

those are (real) orthogonal since A is real symmetric in this case, so

that :

_j,_k> = 0 (fe_ J _ k) (Bi4)

En plus :

J

J'_J " J + I _,_ sin2 m0j
m= ]

L

J

i

2me j )• " j +-----_ (i - cos

m= 1

J - R
= -- (B15)

J+l

where

R = Re(S_ I

5 I (BI6)

S " E exp(m_)
m=,1
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I

in which _ = 2rj/(J + 1). Computing S gives:

J-1

UlIO

• exp(Jta) - 1
•. = exp(ta) exp(ta) I

L

' sin J.a
2

- _ _ t(J + I) a (B17)
' 2 a

, sin

it

i so that:

t
! a Ja

I cos(.' + l) _ ._tn _-
I R = - (Blfl)

sin -_
i

Also :

! a .)j
,1 Co_(S + 1) _" cos -j " (
q

)j+!sin Ja :_ ,
-_-" oin "j - _ = (-I sln 5

l

• so that R = -i and (rt,£ i) "=I. As a rest,'.t,the matrix : that diagon-
J J

#

alizes A and contatps the eigenvectcrs rj for colur_n-vectors Is

erthogona] : i

tr = I (Blg_

\
This matrlx is on plus symmetric:

.t
• = r (B20) ,

1

' In particular, ". dtagonaltzes the smoothing operator Dx of Equation (i2):

Dx = r.(2I + 2K)[ - 2_i + _K_) (B21)

where K = Dlag(cj) a_d cj = cos Oj.

Now consider the matrlx Cx = Trld(-l, O, i), in Equation (12)• In

view of Equation (7.10),it appesrs that this matrix lq dlagona]ized by
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x - D,,. (Be2} {t

• a _,,_ere D ts th, _ ' " fixuldgvtt,¢, at:it witil mtil _.lgenvalue l'<ilta_l to i =. Henct,,!

X-I ,, _.-ID-; _, e._ ,, "*D* = X* (B23}

shot..ing that X Is then unitary as expected, since ('x is real skew-

symmetric. The etgenvaluea of C. are Riven by FqtL'_tio_x (Rlt_. and this

permits us to write ('x tn thv fol;owtng form:

Cx " X(tK)X -1

where the diagonal matrix K is dt, ftned tv_ l-'qttatfo.: (821_.
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_., X. APPENDIX C: STABILITY CONDITION FOR PERIODIC BOUNDARYCONDITIONS

' AND SECOND-ORDER S_OOTHING

_' In this appendix, Equation (39) which expresses the stability condition

. for the case of periodic boundary conditions and second-order smoothing, is

derived. For this purpose, it is recalled that the satisfaction of Equa-

tions (33) and (35) constitutes the necessary and sufficient condition for

stability.

For the caqe considered,

d I - d_, ==2(1 - cos 0j) } (el)

d k = d k 2(1 - cos Ok )

•" = _'(j - 1)/J (j = 1 _ . .1) and "_ -- 2_(k- I)/Kwhere J ...... k

(k ." 1. 2, .. K), and it is convenient to let:

dI _, d.i - 4_

dk = d' = 4;k

(C2/
.... /4t

• = 714

In this m/inner, the nvw variables ?. and q, which are not subscripted for

not,tttona] simpJlctt.,,, take their values in the interval [O,]]. Equa-

tion (36) then become.;:

gjk(0 ) = ,,.'_.:(r + q):' _ 2,'_(g. + q)[ef(f. + q) + 21

+ 2_(E + u) + O?t2(f. - ,7) 2

= t,"[(; - c)2(r. + q)2 _ 4t2En - 4pF(_" + u)l (C3_

: j
t
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where u "= (8 - I/2)/{_2. As a result, Equation (35) becomes:

f(_,n) <_mE (C4) i

where I

f(_,n) - (f,+ q) _ E2 _n (C5)F.+n

The satisfaction of Equation ((;4)for all feesible valueq of E and q is

equivalent to the condition:
i

s(,-,¢) <_,,,z (c6)
|

where

}S(e,F) = Sup f(._.,n)
(C7) _ -

0"- _., , "- 1 ,_

Some stmp]e conclusions can be drawn at first. For this, uote that, if

c - _, f(_,q) < 0 and Equation (C6) is _atisfted. Thus, the algorithm is

unconditionally stabl,, for every value of 0 (provided l:quation (33) holds)

,i for the case where the equationi

, u_ -_ _u_ + buv = C(Uxx + Uvv) (C8_

is dtffert,nced in a time-accurate manner. Also observe that

f(1,O) = _ - c):/4 2 O, so tluat, unless perhaps thxs value is zero, S(r,?) t
g

-_ is strictly positive. Ce,nsequentlv, for trapezoidal t!m,,-dtfferencing . ,\

(0 _ 1/2), since u " O, letting , - 7 constitutes the only way of

' enforcing unconditional stability rsee Equation (C6)). For this reason,

0 > 1/2 and a > 0 are assumed in t'he remaining.

The next step consists of the determination of S(t,_), that is, the

maximization of f(_,,) for fixed values of , and _r. Inspection of

' Equation (C5) indicates that f(_,q) is a homogeneous function of _ and q ,

,t
.,_-
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_., of degree one. Applications of Euler's theorem for homogeneous functions

. gives the following identity:

_f _f

_' f(_,n) = -_- { + _-n n (C9)

This shows that if there exists a local maximum of f(_,n) at a point of the

open square ]0, i[ × ]0, I[, this maximum is equal to zero. In view of

Equation (C4), It appears that such maximum, if it exists, does not yield

any binding condition for stability. Hence, the maximization of f(E,n)

can be reduced to the one over the boundaries of the square. Since, en plus,

f($,n) is symmetric in _ and ,I,only two of these boundaries need to be

considered. These are the segments: (i) 0 < _ <_I and n = O, and

(2) $ = i and 0 < n _<I.

For n - O,

It is maximum at the point _ - i, which also belongs to the second se. '_ent.

Consequen[ ly, i'

s(_,_) ,, Sup ¢(r,) i
(Cll)

o_< n<_l
1
i

• where

¢(n) - f(1,n)

" (n + i) + e2
n + 1 (C12)

Differentiating Eqt,_tion (C12) gives:

¢' (n) -, _ - e
; (n 7 i) [01 + 1)2 - w_] (C13)

where m - 2e/J_ - cJ. If m a 1 or m <_2. ¢'(n) does not change sign

when n _ncreases from 0 to i, and $(n) is maximum at either one of the
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_ two endpoJnts If 1 < _ < 2, ¢'(q) < 0 for 0 S n <__ - 1 and _'(n) >_0
I a _r

,: for _ - ] _<n i i, 80 that _(n) is again mazimum at either one of :he two

• _ endpoints. Finally: ,,:
e !
i S(E,_) ,= Max[¢(O), _(1)1 (C14)

One obtains :

i _(0) -- >_0

,, (ClS)

' Equation (C6) then breaks into the following three inequalities:

_ g
(Cl6)

Using, the definitions of e and _ given in Equation (C2) and making a few

simplifications yields Equation (39) (Q.E.D.).

Remark: In this derivation, ao case has been made of the -hape of the

function h(O) for which dj = d) = h(Oj) and dk = d_ = h(Ok). Hence, '"

Equation (C16) applies to all the cases where _he same type of smoothing is

app]ted implicitly and explicitly, provided c and F. are defined by:

; _- = t_i/_ma x

= eel Xmax

i is assumed that the eigenvaluee c.f the smoothing operator vary from
where It

0 to _ In partlc_lar, for fourth-order smoothing applied explicitly

and implicitly one would let: a

0 _

1

and apply Equation (C16).
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, X]. APPENDIX D: STABILTTY CONDITION FOR PERIODIC BOUNDARY CONDITIONS

AND FOURTH-ORDER SMOOTHINC

In th.ts appendix, Equation (40), s_hlch expresses the stability condi-

tion for the case of periodic boundary conditions and fourth-order smoothing,

t

is derlvecl. For this purpose, it is recalled that the satisfaction of

Equations (33) and (35) constitutes the necessary and sufficient condition .

for stabl] ity.
L

{ For the case considered,

• (DI)

dk = 2(1 - cos 0k) , d_ -- dk2

where 0j = 2_(j - I/.l (j = I, 2, ., J) and Ok = 2_(k - l)/K

(k = i, 2, ., K), and it is convenient to let:

= dj = _F , d_ = 16£ 2

d k -4n , d_ = 16n 2
Q_2)

f = 0r/'
i

ce = _I16

In this nmnner, the new variaFles _. and n, which are not subscripted for

notationa] s_mp[iclty, take their values In the interval [0, I]. Equa-

tlon (36) then becomes:

gjk(O ) = 02[?(_2 + q.')2 _ 20F(_2 + q2)[06(_ + ,]) + 2]

+ 2F(_.? + n") + 02r2(_ - r):" (D3)

De f_ne :

. + (D,.,)2
Y
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and

1

where u = (e - i/2)/( ,2, so that l

gjk(0) = 4e2f($,n) (D6)

As a result, Equation (35) becomes:

f($,n) <_0 (D7)

The satisfaction of Equation (D7) for all feasible values of _ and n is

, equivalent to the condition:

S(c,_) <_0 (D8)

where :
!

S(E,E) = 0<_Supf(_,n)_,n < 1} (DQ) ,_1

Thus, the problem consist._ of maximizing f(_,n) over the closed square
t

[0, i] x [0, i]. For this purpose, one first looks for stationary points I

of f(_,r,) that belong to the open square. At these points, if any exists, ;

_f ag 2u_[ - E2n - 0,3T" 2g(_.,n)_ -

J (D10)

3_.f_
2g(_,n) _- 2_n - E2_ = 0an

so that, in particular

o - :_ - _J

" , = ?g(f,,n)(_a-_n- 3_-_r/ + (2pE - e2)(_, - n) (Dll)

- (_ - q)[-2Eg(F_,n) + 2ti - e2]

I which requires the sarisfactlon of at least one of the following two

eqt_ tlons :

i
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' $ = q (DI2)

', 2p[ - 2_g(_,t]) = e2 (DI3)

. If Equation (DIS) holds, It is also true that:

_f _f

[ -n___._ _ + 2_E(_ 2 )

£.

.- = 2g(E,n)[F(n2 _ _.2) _ _. (q _ %)] + 2u[(_2 _ q2)

= (<:' - n2)[2u_ - 2?g(&,r))] + cg(_,n)(£ - ,I) (DI4)

Now, assume thaL f(_,,1) is stationary at a point (£.n) of the open square

that does not belong to the llne [ = q. Then, at tl,ls point, Equa-

tions (DI3) and (DI4) must hold simultaneously, so that:

1 n2
0 : _(_ + ,_) + P,(a,n) = _ [7(_: + ) + e(_ + n)] (_15)

If the trivial case t-- ? - O is eliminated, the satisfaction of

Equation (DIS) ts Impossible for E . 0 and )i> O. This brtags a contra-

diction to the ,_ssumptlon [ # ,]. Co.sequent]y, if f(F.,)) Is stationary

at a point (i.o) of the open square, this point belongs to the line [ = q.

Hence, it suffi('es t_ enforce Equation (DT) on the boundaries of the square

and its dlagonaI segment 0 < [. - tl<_ I. Observlng that f(_,,,'_ is svm- \
\

metric in _.a_d ,) permits us to further reduce Its maximlzat_on to the

one over the following three segments: (I) 0 E F,= q _/ I, (2) O __ F.__ I,

q - O, and (3) - i, 0 _ ,___ i. For this reason, three caees will now he

examined separately.

- i
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t

'' "_ De f in e
f L

¢(_) - f(_,E.)/_ 2
(DI6)

,, _. - (_ - _._ - (2_ + c2)

" so that

"' ¢'(_,)= 2_(E_ - -c) (DI7)

' When _ Jncrea._es from 0 to e/_, ¢(_) decreases, and since ¢(0) ,, -2_ < 0

remains negative. For values of [. greater than [/_, _(_) ].s an increas-

Ing function of 6. The satisfaction of Equation (D7) over the considered ._

segment is hence equivalent ro the condltlen

, ¢(i)-:0 (DI8)

This gives the follow/ng necessary condition for stability:

* 1

e Z _ (_- 2_,) (DIg)

Case 2: 0 - r < 1 4 " 0
-- L, -- • I

. For this case• Equation ()7) takes the following particular form"

i- ug[,2 _< C (D20)

whluh is equivalent to:

[ (_ r) ? < 4u_ (D21)

or

!

. The binding case for the inequalttv on the left corresponds to C - 1. For

i the inequality on the right, the binding case corresponds to E - O. This

givt.s the following necessary condition for stability:

-. 2_/_ _ e _< 2_r_ " (D23)

i
,t
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Case 3: ,,_ = 1, 0 .__ n ..< 1

For this ease, one defines

_,(n) = fO n)

= 1 [F(n 2 + 1) - ,:(n + 1)] 2 - ;,_'(ll ? + 1) - C2,l (D24)4

which is a fourth-degree polynomial in q. The satisfaction of Equation (D7)

over the considered segment is equivalent to the conditaon

_,(n)<_0 (D25) :

for 0 _ u -/i. It is assumed that Equations (DI9) and (D23) hold, so that

4(0) and _(I) are both nonposltlve. Hence, if an additional condition must

he ¢.nforced0 it must be of the form:

_'(,l*)i 0 (D26) ii

where 0 • n* < i, and

' _'(q*) = 0 (D27)

(fol a local maximum). Dividing the polynomial _(n) b%, its derivative

4' (,,),according to de.creasing powers of ,l,produces a quadratic remainder,

q(q). This gives the following Identlty:
, I

_,(n) = (a,l+ b)'_,'(,_)+ q(,;) (D28)
i

where !

q(,)) = au" + _:,,_+ y (D29) '
• \

The calcu]ation of thv coefficients a, b, a, 8, and _ gives:

a = I/4

i

b = .-t/(8F) (O301

and.

1
" - ,:- - ,'}

6

t_,=-I--6-_{(c" - 4_,7) 4._' - 8eg} (D31_ '

= _ [(_ - _1 - 4P71 - c (_"+ .7147

Igl
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!

where terms between b_ac|,e_s [ ] are nonpositive, as a consequence of I
T I

J

. Equation (D23). Hence, it is direct!,' apparent that 6 _<0 and y , 0, i

" This implies that q(0) = y < 0. Now compute q(1):
t " -- I

= i

q(1) _ + B + y (D32)

i E i . _ _,_
< ]-_ (4_ 2 - 4[e - 8_[) + I--_ (-4[2 - 8£[) + _ ([ - £_2

where some nonpositive terms have been neglected. After a few simplifica-

tions, one obtains:

• [ 3
q(1) <__ (_ - 2¢) - _ U_ (D33)

This indicates that in case [ <_ 2a, q(1) _< 0. If now, _ - 2_ > 0, the

satisfaction of Equation (DIg) requires that _ - 2e < 2u, so that

q(1) __-uF/2 <_ O. Thus, in all cases, q(1) _< O. Now, if e <_0, since

B _< 0 and 7 < 0, q(,_) _< O for O _< q. If a > 0, q(q) achieves a mini-

mum at the point

> 0 (D34)
_ = - 2--_-

Whelh,r F) belongs to the in_('_val [0, I] or not, since q(0) and q(1) are

both nonpositive, so Js ,(<] for all values of q in this interval.

Hence, in both cases, q(n) _<0 ft" 0 _< )]_ i. \

Hence, if it happens that _,(q) admJts a local maximum at a point q*

of the open interval ]0, i[, then, as a consequence e: Equations (D27)

and (D28), the follo_Jng is tr,le:

_'(n_,_ = q(n*) _<0 (D35)

Thi._, show._.tllat _'(q) £ 0 for all values of ,I in the open irterval ]0, i[,

provided ]quations (D]9) and (i;23) hold (sufficiency).
4
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In conclusion, the satisfaction of Equations (DI9) and (D23) coi'.sti-

s 0

tutes the necessary and sufflc._en_ ........onu_u,, _. the_ unconditional stability

,, of the algorithm for the case considered, keplacing, in these equations,

£ and _ by their definitions, given in Equation (D2), yields the desired

equation (Equation (40)).

Rem_irk 1:

In this derivation, no case has been made of the shape of the function

= , = h2
h(O) for which dj = h(Oj), d._ = h':(Oj), d h h(Ok) , d k (Ok). Hence,

Equations (DI9) and (D23) apply to all the cases where the explicit smooth-
4

ing operator D_ (or D_) is the square of the implicit smoothing operator i

i _ --O¢i/Xmaxi

: t (D36)•, ee/X2 x

where it _u assumed that the eigenvalues of Dx (or Dv) vary from 0 to

X . Ho;¢ever, this has apparently no app]icatlon since the next stepmax

aft_'r the comblnation second-order implicit/fourth-order ex_,licit smoothing

would be the combination fourth-order impllcit/sixteenth-order explicit

smoothtng, which is i._practical.

Re_zrk 2:

i Note that Equations (D!9) and (D23) are equivalent to Eouation (C16).

I Thib is because the same boundary values of _.and y_ give rise to the

i .
_tability co_ditlons fo_ fourth-order smooth xng as for second-order sr._oth-i

I

ing. Hence the two cases only diffnr by scale factors which have been elim-

, inated from Equations (C16), (DIg), and (D23) by a tropriate definitions o c

the parameters E ano _.
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"[ XII. APPENDIX E: EFFECTIVE EIGENVALUES OF THE SNOOTHING OPF_ATO;,S

The "etfectlve elgenvalues," and d , of the smoothing operators,

' f Dx or Dx 2, were introduced in the development (, the stability-% Dx and Dx

" analysis for the ca__ of speci.!ed boundary data and large Courant numbers

(Section lIB3). These effective eigenvalues are evaluated in this appendiy.

For this purpo,. _., on recalls tPat:

dj = (X-IDxX)jj (El)

11 "a'.-- (X-_D_X_ (E3 " "JJ )

where the various matlices are of dimensions J×J and defined by:

Dx = Trid(-l,2,-l)

Dx Dx or Dx'-
(E3)

Xmj = /2/(J + i) im sin mOj

Xm] = )727(J + 1) (-I) j sin J'_m ),
, P

where uj = J_/(J + I) aad m, j = L, _,° ., j.

__=. Appl',ing Equation (B_3) to the case where:
\

1 'a = -I - 6 , '\,
\

b = 2_ (E4) '

, c I - 6

gives

J

^j = 2c + ,'-(1 - ¢-:)c__s Oj

•, i cos Oj + 26 + O_e 2) (E5)

This show_ that when the matrl;. ,7. = Trid(-l,0,1' is perturbed by mat"Ix

eD X ,, rrid(-c, 2r, -e), where *- _s a small parameter, the f_rst-o1_er
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perturbations brought to the eigenvalues of Cx have the coefficient 2.

This is equivalent to saying that:

dj --2 (E6)

as one could compute by expllciting Equations (El). But according to Equa-

tions (B21) and (B22):

Dx= X-IDx

= 21 + 2U*KU (E7) "

where _, D, and K are defined In Appendix B, and

U = _D_ (Z8)

is another unitary matrix. One concludes that the diagonal elements of

U*KU are all equal to zero. Considering now the case where Dx --Dx 2 and

squaring Equation (E7) yields:

Dx~,. X-IDx2 x

- 41 + 8U*KU + 4U*K2U (E9)

Hence, for this case:

d] = 4(1 + wjj) (El0)

whete:

wjj = (U*K2U)jj

  _41umj 2 ,
= I Cm (Ell)

in which cm - cos 8m. It has not been possible t_ evaluate wjj expllc-

Jtly. However, it appears from Equation (El.I)that wjj, and consequently

T
r
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d_ is real and positive. Moreover, since U is ,unitary and symmetric, the

following is true for every value of j:

_.._I_j 12 1 (m2)

Since ICml _ l, the following bound holds:

0swjj_. IUmjl2.1=
1 (El3)

and consequently:Q

4 _ d_ _ 8 (El4)

The remainder of this appendix shows that the maximum value of d_ does

converge to 8 in the limit of a mesh refinement. For this, let

w =Max wj (EIS)j J

to make the claim equivalent to the follcwing statement:

lim w - I (El6)

J_

The simplifying assumption that J is odd is made, and one lets

J + i = 2_ (EIT)

so that @v = _v/(J + i) - _/2. Since w E I (see Equation (El3)), it is

sufficient to show that:

lim w_v - 1 (El8)
j_

To evaluate wu_, one first computes Um9 using Equation (ES):J

Umv " (_D_)mv = _mjDjj_jv

J

ij sin mej sin J% (El9)J + i/..#
J=1
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where the values of E and D were taken from Appendix B. Recall that

" ] Ov = _/2 to simplify Equation (El9) as follows:

Umv . J +2 1 i2k-i sin(m82k-I ) " (-l)k-I
: k= 1

v

21
sin[(2k - i)8m]=J_l

k= i

21

. J +-----_Im (E20)

where

] % Im(_m) l

i v (E21)J
,i a m k_l exp[i(2k- 1)era]

One first computes 0m as follows:

_-I

°m = exp(iem) _- exp[q(2iem)] , i
q;O

exp(2vie m) - 1

--exp (iBm) exp (2i8m) - 1

I

exp(2viem) - 1
= (E22)

2i sin Om

Note that 2rem - _m, so that

Om (-i)m- i
= 2i sin Bm (E23)

im= i + (-i)m+*
2 sin em (E24) _

i
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i

and

i i + (-i)m+_ (E25)
Jmv " j + 1 sin 8m

One now applies Equation (Ell) to the case J - v to get:

J

w_x, = _ lUmvl2 cos2 em
m-1

J J

" E Iu._l_- E tu_i_ si.2 e_
, m_l m'l

J

(J+ i)2
m-I

- 1 2 (E25)
J+l

where Equations (El2) and (El7) have been used. Equation (E26) validates

the statement made in Equation (El8) (Q.E.D.).
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XIII. APPENDIX F: STABILITY CONDITION FOR SPECIFIED BOUNDARY DATA

,N'I) SMALL COURANT NUMBERS

The stability analysis developed in Secticn IIB3, has shown that when

the data are specified at the boundaries, the following approximate stabil-

ity condition applies to the case where the Courant numbers vx and vy are

small:

2(1 + _id])(l + _idk ) - _e(d_ + d_) > 0 (FI)

where

dkdJ- 2(I + cos Oj) } (F2)
= 2(1 + cos Ok)

in which ej = nJ/(J+l) (J = i, 2, . .., J) and Ok - _k/(K + I)

(k - I, 2, . . ., K), while

dk or dk2

depending on whether second-order or fourth-order smoothing is applied. In

thls appendix, the condition expressed in Equation (FI) is expliclted for

these two cases. For this, one lets

d3 '- 4_
r

dk - 4n (F4)

cI - c14

and

- or 21

d_ - 4q or 16n 2 (F5)

¢e " _/4 or _/16
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I
In thls manner, the new variables _ and n, which are not subscripted for

notational simplicity, take their values in the interval [0,!], and Lqua-

tion (FI) becomes:

2(1 + c_)(l + cn) - _(_p/2 + nP/2) > 0 (F6)

where p is the order ol the smoothing applied (p = 2 or 4).

, A. Second-Order Smoothing

In the particular case where second-order smoothing Is applied (p = 2),

Equation (F6) becomes, after rearrangement:

- 2_ < 2 1 + _2_ ! (F7)- _+n

Hence, we are led to determine the function:

f(c) = Inf g(_,n) _ (F8)
0<_, n<l J

where

g(_,n) = 2 1 + _2En (Z9)
_+n

and to write the stability conditions as follows:

- 2_ < f(E) _'FIO)

For this, one lets

x=_+n}
• (Fll)

* Y=n- _

In thls way, the domain of study (see Figure 19) Is now defined by:=

0 _< x < 2 _ (F12)

)yl -<ymex(X)!
whele ymax(X) = x or 2 - x depending on whether x __ 1 or x P_1.

Cou_uting

I
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4 + __2(x2- _,2_ (FI3)
g(_,D) " h(x,y) = 2x

indicates that for given x, h(x,y) is minimum at y = Ymax(X). Let

#(x) - h[x,Ymax(X)]. For 0 _< x _< i, Ymax(X) - x so that ¢(x) = 2/x

which achieves a minimum value of 2 at x = io For x Z i, Ymax(X) = 2 - x "

so that :

4 + _2[x2 _ (2 - x)5].
• _(x) = 2x

• , 2(1 - e2) + 2¢ 2 (FId)
x

Hence, if e _> l, _(x) is nondecreaslng 9ver the interval [1,2], so that

_(x) is actually minimum at x = i. This gives

f(e) - 2 for e > 1 (FIS)

If now, instead, e < ], #(x) decreases when x increases from 1 to 2, and

#(x) achieves its minimum at x - 2, so that:

f(c) - I + e2 for e < I (FI6)

Combining these results with Equation (FI0) yields the following conditions

for stability:

e _> _'e- i for _ -< 4 I (FI7)
£ !c _>_- 1 for _ Z 4

Replacing 6 and _ by their expressions in terms of ¢i and ee given in

Equations (Fd) and (FS), yields the desired equation (Equation (56)).

• Finally, the remark that was made on Equation (C16) in Chapter IX also

applied to Equation (FI6).
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B. Fourth-Order Smoothing

In the particular case where fourth-order smoothing is applied (p - 4),

Equation (F6) becomes, after rearrangement:

_<2,,,I+ c )(l+ (HIS)
_2 + n2

Hence, if one defines, for this case, a function g(_,n) by

g(_,n) - 2(1 + ¢_)(i �Erl)(FI9) "
_2 + n2

and a function f(¢) by Equation (F8) the stability condition takes a form

similar to Equation (FIO), which is

_< f(¢) (F20)

New variables x and y are also defined as in Equation (FII), and the

domain of study is still given by Equation (FI2). Here,

g(_,n) = h(x,y) - 4 + E2(x 2 - y2) + 4ex (F21)
x 2 + y2

Note that for given x, IYl -< x in the domain, so that the numerator of

h(x,y) is positive and decreases when lYl increases. The denominator is

also positive hut it increases with lyl. Thus again:

f(c) = Inf _(x) 1
(F22)

!0<x<_2

where !

_(x) - h[x,Ymax(X) ] (F23)

For 0 < x _<i, Ymax(X) - x, _o that:

2 2E

(x) - _+--x (F24)

which achieves a minimum value of 2(1 + e) at x - 1. For 1 < x < 2,

Ymax(X) - 2 - x, so that:

_._mm_.emmmmamummSlmmJlllt___-- -- " _ ....Jl
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4+e2[x2- (2-x) 2)+4ex(x) -
x 2 + (2 - x) 2

- 2 (c2 + E)x + 1 - _2 (F25)
x2 - 2x + 2

and

(x 2 - 2x + 2) 2 _'(X) " (E2 + E)(X2 - 2X + 2) - 2(X - I)[(£ 2 + e)X + 1 - e2]
2

• " -(C 2 + £)X2 + 2(¢2 - I)X + 2(1 + E) (F26)

Note that _' (x) has two real zeros given by:

Xl'X2 . e2 _ 1 -+ /(e2 _ 1)2 + 2¢(1 + E) 2 (F27)
e2+c

Clearly x 1 < 0 and x2 > 0, and #(x) changes sign at most one time (at

x2) in the interval [1,2]. Since, also, _(1) - 2_(c + 1) >_ 0, _(x)

achieves its minimum at either x - 1 or x = 2. Computing

_(i) ,,2(¢ + I) I (F28)

#(2) - (c + 1)2 J i

indicates that _(1) _<_(2) when _ > 1. In vlew of Equations (F20)

i and (F22), the stability condition is written as follows:

¢ _>_- 1 for _ _<4 I ;_
(F29)

c _>_- I for _ Z 4 )

' Replacing e and _ by their expressions in terms of cI and ee given In

Equations (F4) and (FS), yields the desired equation (Equation (57)).

The remark that was made on Equations (D19) and (D23) in Chapter X

(Remark 1) also applled to Equation (F29). Also note that Equation (F29)

is Identlcal to Equation (FI6) for a reason given in Chapter X (Remark 2).

¢
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XIV. APPENDIX G: ON THE EIG_qVALUES OF THE MATRIX r

The stability analysis of Section lIB w_s developed for the. a_e _ a

scalar, linear partial-dlfferentlsl equation_rlth constant coefficlt:nts. In

this way, the convective derivative operator Cx, then (real) skew-_'m_etrlc,

had purely imaginary eigeuvalues, and this property was cruclal to the

derivation. In Chapter IV it was _hown that for the Euler equations, this

property is most likely to be true when the following matrix

"0 a2

a 1 0 a3

a2 0 a4

rj = • (GI)*

aj_ 2 O aj

aj_ I 0

has real elgenwllues. (In Equation (GI), aj represents the vatue at

xj = (J - l)Ax (J = 1, 2, •., J) of any one of the four eigenvalues of

the Jacoblanmatrlx A (for 2-D flows), and rj is subscripted to indicate

its dimension.) In _his appendix, the question of whether rj has real

elgenvalues is investigated.

Three cases will be examined successlvely. They are: Case I -

a I, a2, . .., aj are all nonzero and of the same sign; Case II - there is

at least one true zero in the sequence aj at every alternation of sign; and

Case III- there is at least one value of j for which ajaj+ 1 < O.

All three cases could be studied by analyzing the characteristic poly-

nomial of r., that is

Aj(_) = det(rj - _Tj) (C2)

i
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where Ij is the jxj identltymatrlx, but for Cases I and II simpler

arguments, which yield the desired information, are preferred here.

For Case I, define a sequence _j by:

6 =1
I (G3)

6j+I = aj_aj/aj+I (S = i, 2.... , J- i)

Clearly the sequence 6j is well defined, and none of its elements is zero,

so that the diagonal matrix

V = Diag(_j) (G4)
%

is nonsingular, and

V-I = Diag(6; _) (C5)

Then perform on the matrix rj the following similarity transformation:

rj = v-lrjv

- Diag (6_I)Trid (aj_I'0,aj+ l)Diag (_j)
(c6)

._ " Trid(6jlaj_idj_i,0,6;laj �œ�Œ�ð�1)

' C+;
i - Trid _laj, 0, (G6)
,, The matrix Fj is found real symmetric. As so, it is diagonalized by an
I

orthogonal transformation fl and has real elgenvalues, These eigenvalues
I

also those of the matrix rj which is similar to the matrix Fj. This
are

cane is hence favorable to the stability of the implicit algorithm. (More

information about the eigenvalues of the matrix rj, in Case I, is gi-en in

the remarks at the end of this appendix.)

Using a continuity argument, Case II can be treated as an extension of

Case I. For this, an undetermined scalar parameter x is substituted in

place of every zero appearing in _he original sequence aj, all the other
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element8 of this s_%uencc L=.ingmaivtained the samp. _n this way. the

matrix rj becomes a first-degree polynomial of x whose eigenvahes for

x = 0 are required. The.coefficientb of the characteristic pol)_omlal

Aj(t) are simply some polynomlal_ of x, that is, continuous functions of

x, so that :

Aj(_)I = liraAj(_) (07)
[x=0 x-+0

Put for x # 0, Equations (G3) through (C6) apply. Hence, for x - 0, the

matrix rj (here defined by the last llne in Equation (G6)) and the matrix

rj may not be similar, but have the same characteristic polynomial, and

thus the same eigenvalues. To analyze these eigenvalues, suppose, for i

example, that ar = 0 for eome r. In the neighborhood of this element,

the matrix r. has the following structure:
,2

• I
{i

o qar__ar__I

V r:at_, 0 I0_I _ (
0 O 0

\

0 1 0 Vat+ far+2 ':'

J _/ar+l_r+2 0 _
I
I • i

Here, the _atrlx Fj is found block-dlagonal. Any of these blocks
is a

real symmetric (trldiagonal) matrix (because consecutive nonzero elements
%

of the sequence aj a_e )f the same sign), and separated from the next one

by at least one row and one column of zeros. In view of this, let _k be "i

I
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the Lorthogonal) matrix that diagonalizes the kth block, and _ be the

(orthogonal) block-diagonal matrix where the blocks are taken to be _I'

Iml' 02' Im2' 03' etc., where Im is the mxm identity matrix and mk

the number of zeros that separate posl[ive from negative elements of the

sequence a4 at the kth alternation of sign. Clearly the matrix
J

diagonalizes the matrlx £j whose eigenvalues _re then found to be those

" of the blocks in the "d agonal" of the matrix £j taken together, with

, en plus the eigenvalue 0 added Emk times. These eig_nvalues, which are

also those of the matrix Pj, are all real as is desirable for stability.

For Case III the characteristic polynomial Aj(1) of the matrix rj

n_,ds to be analyzed. For this analysis, expand the determinant of the 1

matrix

rj+ I - iij+ I = ,. (CS) 1

aj I -IJ
along its last column to get:

rJ-1-I J-1l
Aj+I(1) = -l&j(1) - aj+ I det [ aj

]aj

and finally:

• &j+l(1) = -XAj(1) - ajaj+l&j_l(1) (G9)

From this result, one can derive the following formulas:

_2m(I) = Pm(12) (Gl0a)

d2m+l (I) = -IQm(_2) (Gl0b)

L
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where m is a natural integer, and Pm(x) and Qm(x) are. polynomiais o_

degree m, vrlth leading term x m, and which satisfy the following recurrence

formulas:

Pm+l(x) - x(_(x) - a2m+la2m+2Pm(X) (Glla)

O_+l (x) - Pm+l (x) - .2m+2a_+3Om(x) (Ollb)

To see th_s, use induction. Compute
t

-_ a l
A2(_) -

a2 -_

. _2 . ale2 (G12)

and

-l a 2 0

A3(l) - a 1 -_ a s

0 a 2 -l

. _(l 2 - a203) - a2(-al)_ )

- -_[l 2 - (sla2 + a2a_) ] (GI3)

Clearly, _f one defines:

Ao(_) - 1

•"o(x) - % (x) - 1
(¢14)

PI(X) " x - ale 2

QI(x) " x- (ale2 + a2a3)

Equation (GIO) holds for m - 0 and m - 1, snd Equation (Oll) holds for

m - 0. Now suppose that Equation (OlO) hclds for m - r for some r >_I,

and Equation (011) holds for m - r - I. Then applying Equation (G9) with

l - 2r + ] gives:

l
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A2r+2 (Z) - -XA2r+I (X) - a2r+la2r+PA2r (_)

. X2Qr(X2 ) _ a2r+ta2r+2Pr(X2 ) (G15)

Hence, Equation (GlOa) holds for m = r + 1 provided Pr+1(x) is defined

according to Equation (G11e) in which m is set equal to r. It also

appears from this equation, that since Pr(X) and Qr(X) are polynomials of

degree r, with leadlng term xr, Pr+1(x) I_ a polyuomlal of degree r + 1,

r+l
with leadlng term x . Similarly,

t _2r+3(_) = _k_2r+2(A) - a2r+za2r+3A2t.+1(_)

- -X[Pr+1(12 ) + a2r+2a2r+3Qr(X2)] (GI6)

Hence, Equation (Gl0b) holds for m - r + 1 provided _+l(x) is defined

according to Equation (Gllb) in which m is set equal to r. It also

appears from this equation that since Pr+1(x) and Qr(x) are polynomlals of

r+1 r
degrees r + 1 and r, respectively, with leading terms x and x ,

respectively, Qr+1(x) is a polynomial of degree r + 1 with leading term

r+1
x This shows that Equation (GI0) holds for m - r + 1 and Equation (Gll)

holds for m - r; hence, they both hold for every value of m. (Q.E.D.)

In view of Equation (GI0), the following two conclusions can be drawn:

(i) if _ is an elgenvalue of the matrix Fj, then -I is also an elgen-

value; and (2) the eigenvalues of the matrix £3 are all real if and only

if the roots of Pm(x), in case J - 2m, or _(x), in case J = 2m + i,

r are all real positive.

The first result could be derived dlrectly for the block matrix with

the same structure. The second one implies that a necessary condition for

the matrix r3 to have only real roots, is that the coefficients of Pm(x),
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in case J = 2m, or Qm(X), in case J = 2m + i, alternate in sign, or

equivalently,thatthecoefflcientof or respectively,give,by

(O)/,,i}
i (-1) P_ (0)/vl

(G17)

sin-(_) (_l)=-v^ (u)

where v = O, 1, 2, . ., m, be all positive. Recurrence formulas for

these coefficients can easily be obtained using Equation (Gll). In particu-

lar, setting x = 0 in this equation and multiplying the result by (-I)m+l

gives :

(o) Ia2m+2_(° ) (Gl8a)am+l " a2m+

(o) (o) + _(o) (Gl8b)
m+l " am+l a2m+2a2m+BSm

Similarly, differenciating Equation (GII) v tlmes (v > i) with respect to

x, setting x- 0, and multiplying the result by (-l)m+l-v/v! give:

(_) ,.8(v-l) + a(v) (Sl9a)
_m-I-1 m a2m+ la2m+2 m

I

8(_) (_) + a a 8(_) (GI9b) i
_H-1 m a .F1 2_4-2 2rod'3 m

which in fact, in view of Equation (GI8), can be applied with _ = 0 if one 1

defines 8(-I) = 0. Equation (GIg) should be completed by the following
m

"boundary" conditions :

_(m) = 8(m) = i (G20)
m m

which simply state that xm is the leading term of both Pm(X) and Qm(X).

From this, it is easy to derive explicit formulas for a(_) and 8(_) 3,

for u = 0 and I, now denoted more simply by am, Bm, am , and 8'm,respec-

tively. In particular, applying Equation (Gl8a) recurslvely gives:
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!

am = a2m_la2m_m_l

= e2m_3a2m_2a2m - la2mUm-2

ala 3 • . a2mUo

- ala 2 • • • a2m (021)
%

where Equation (G20) has been used wlth m = 0. Now, write Equation (GlSb)

with m = k - 1 (k = i, 2, . .., m) and multiply the result by

a2k+2a2k+3 . . a2m+]. Thls gives

ale2 • . . a2m+l

a;k+2a2k+3 • . a2m+lBk " a2ka2k+1 • . . a2m+lSk_ i + a2k+l

(G22)

where Equation (C21) has been used. (For k = m, the coefficient of Bm

in this equation is understood to be one.) Then, write Equation (G22) for

k = i, 2, .., m, add the resulting relationships, use Equatlon (G20) wlth

m = 0, and simplify the result to get:

m

= I_
3m ala2 • . a2m+l _ a2k+l

(023)

k-O

Similarly, write Equation (Ol9a) with m - k - i (k - i, 2, . .., m) and

• v = i, and multiply the result by a2k+la2k+2 . . . a2m to get:

t k

ala2 " "k" a2m _ _i
a2k+la2k+2 ' " " a2m_l_ " a2k-la2k " " " a2ma_:-I + a2 J,,1 a2J-1

(024)

i
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where Equation (G23) has been used. Sen, _ite Eq_tion (G24) for

k = i, 2, .., m and add the res_ting relationships to get:

t t_, = ala2 _ ! (G25)
m " " " a2m a2k a2j_l

k=l J=l

where the fact that a' = 0 _s been used, Finally, Rite _mtfon (G19b)
o

with m - £ - I (£ = l, 2, .., m) and _ - i, and m_tiply the result by

a2£+2a2£+3 . . . a2_ ] to get:

t m !

a2£+2a2£+3 • . . a2_18 £ a2£a2£+ 1 • . a2_18£_ I

£ k

ala2 " " a2_l k_=l --!--iI_i _ (G26)
i2£+ I a2k a2J-I

+

where Eq_tion (G25) has been used. _en _ite Eq_tlon (G26) for

£ = i, 2, ., m and add t_ res_ting relationships to get:

m £ k

8m = ala 2 • . a2_ l 82£+i a2k a2J-i£=I

where the fact t_t 8_ = 0 has been used.

In v_ew of the Equations (G21), (G23), (G25), and (G27), it appears

that in the event one or several alternations of sign occur in the sequence

aj, without separation of positive from negative values by at least one zero,

(v) ^(_)
it _s _st unlikely that the coefficients a m or _m are all positive.

It suffices that only one of these coefficients be negative, for Pm(x) or

_(x) to have at least one root x* _Ich is not real positive; then, the

_trlx fj has, in particular, the elgenvalues ±_; these are complex and

one of the two has a positive i_g_nary part; to that one corresponds an

eigenvalue of the 1_trix Cx (s_e Eq_tion (70)) with a negative real part
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which has a destabillzlng effect, sl, ._ it acts llke a negative smoothing.

More precisely, suppose for example, that J = 2m and that am < O. Thij

occurs for example when al, a2, . .., a2r are negative for some odd

value of r. Then let rI, r2.... be the real roots of Pm(X) and

zl, Zl, z_, z2, . . be its COmplex roots. The coefficient am is

simply the product of these roots so that:

am - rlr2 • . (z1_1)(z2z 2) • . .

, - rlr 2 . Izll2 I--212. . . < o (G28)

This shows that Pm(X) then has an odd number of real negative roots

n I, n2, to which correspond an odd number of pairs of purely imaginary

e_g,_.valu,,si/--C_an_-i-/_7-_,i-_2,a=d-i-_-2,•• • forthematrixrj

a,dtheralelgenvaluesand and ••• fo,the
matrix Cx. A similar situation occurs if J - 2m + 1 and Bm < 0.

Remark 1:

The fact that the eigenvalues of the matrix rj are real for Cases I

and II can be derived from Equation (GI0) and (GII). In fact, this result was

originally obtained in this way. In that first analysis, the following

separation properties were found to be true for Case I:

0 < xI ."Yl < x2 < Y2 < • • • < xm < Ym

• 0 < x_ < x_< _ < _2< • • • < x_< x_< x_+_ (G29)
V < < !

, < < v < Y2 < " " ' < Ym Ym Ym+lt 0 < Yl Yl Y2

where {xj>, {yj } (J = i, 2, . .., m), {x;} and {yj'} (J - i, 2, . •., m + I)

are the roots of Pro(x), Qm(_:), Pm+1(x) and Qm+l(x), zespectlvely. The

derfvatlot_ of Equation (G29) is omitted here, since no particular appllca-

tion of it was found.
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However, Equation (G29) shows that the eigenvalues of the matrix £j

• and thus of the matrix Cx are simple, which implles that both mat "ices

are dlagonalizable, an already known fact.

Remark 2:

Consider tilecase where the Euler tmpllclt method is applled to the

fol]owlng one-dimenslonal (generalized) wave-equatlon:

ut + [a(x,t)u]x " 0 (G30) '

If no smoothing is opplled, the solutlon-vector un+l at the n + ist I

tlme-step is given by:

n+ i
u = Lun (G31)

where the following definitions are made:

)L = LI + 2_x Cxn+l I

(G32)

- iD£;* 1_

D = Diag(ij)

Suppose that a uniform bound on un is required. For this, assume that

a(x,t) > 0 so that the results of Case I are appllcable. In particular,

_n+l n+l _n+l
the transformations that diagorallze the matrices ij , £j , and ux (or

L) are, respectively, _, V£, and X = DVO where £ Is some orthogonal

•_trix, and the diagonal _trlces V and D are gl_en by Equations (C4)

and (G32), respectively. Consider first the case where a(x,t) does not

depend on time, so _hat L does not either. Then

|un_ = I (XAX-')nu°l = ,XAnX-lu°l

< ,) I ^1 n Ilu°l (G33)
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where v - |X| • _X-I| is a condition number, and A is the dlagonalized

form of the matrix L whose eigenvalues are given by:

I (G34)

_J = i + i_j

where yj is an elgenvalue of the matrix £j, that is, a real number, so

that I_jl _< i. If the euclidean norm is selected, |AI _/ I so that

, Nunll < v|u°l (G35)

which is the bound we were looking for. The value of v has no importance

in this case.

However, i6 now a(x,t) does depend on time, it appears inevitable to

use the following bound for L:

ILl - NXAX-I[ _< _ (G36)

where 5 is an upper bound for u (which depends on n). This gives:

I un| _< _nl u°l (037)

It hence appears of interest to evaluate _. For this, recall that R is t
f

orthogona] and D unitary, so that: i

,x,- = -Maxl6j"lj. .} (c38) [z.\IX-IN , l_tv-l_| , RV-III . I/Minl6jn[• i

where euclidean norm has been used. This gives !

= supfMaxI_nl./Hin16jnl..] in ;1 J i

- Sup xlaj'_l/Mtnla,'nI (039).! -,

where Equation (C3) has been used. Clearly, _ _> I unless a(x,t) only

depends on time, and no uniform bound for un can be derived from Equa-

tion (G37), whi_:h, to be rigorous, only reveals the failure of this attempt.
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' However, for a practical problem, one anticipates _ to be very large _f

i the elgenvalues aj are themselw,s subject to large variations. ._hls

sug@ests that despite the fact that Equation (G36) is a conserv,_tlve estl-

mate, _he operator L of Equation (G31) is unlikely to be contracting as

one would wish in order to apply the contractlon-mapplng theorem cited in

Section IIA (i.e., contracting in the same norm sense for all n).

#

\

n
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